1. Chen, R., Kim, S., and Chang, Z.,” Redox Flow Batteries: Fundamentals and Application”, Chapter: 5, Publisher: InTech , 2017.
2. Thaller, L.H. and Ohio, S. “Electrically Rechargeable Redox Flow Cell”, United States Patent, 1975.
3. Anderson, G.E.and Middletown, R.I. “Al-AgO Primary Battery”, United States Patent, 1975.
4. Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T.and Liu,Q. “Redox flow Batteries: a Review”, J. Appl. Electrochem, Vol. 41, pp.1137–1164, 2011.
5. Arenas, L.F., de León, P., Frank, C., and Walsh, C. “Redox Flow Batteries for Energy Storage: Their Promise, Achievements and Challenges, Current Opinion in Electrochemistry”, Vol. 16, pp. 117–126, 2019.
6. Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H., Hoon Yang, J., and Kim, H. “A Review of Vanadium Electrolytes for Vanadium Redox Flow Batteries”, Renewable and Sustainable Energy Reviews, Vol. 69, pp. 263–274, 2017.
7. Khazaeli, A., Vatani, A., Tahouni, N., and Panjeshahi, M. H., “Numerical Investigation and Thermodynamic Analysis of the Effect of Electrolyte Flow Rate on Performance of All Vanadium Redox Flow Batteries”, Journal of Power Sources, Vol. 293, pp. 599-612, 2015.
8. Wang,T., Fu, J., Zheng, M., and Yu, Z. “Dynamic Control Strategy for the Electrolyte Flow Rate of Vanadium Redox Flow Batteries”, Applied Energy, Vol. 227, pp. 613-623, 2017.
9. Yang, H.S., Park, J.H., Ra, H.W., Jin, C.S., and Yang, J.H. “Critical Rate of Electrolyte Circulation for Preventing Zinc Dendrite Formation in a Zincebromine Redox Flow Battery”, Journal of Power Sources, Vol. 325, pp. 446-452, 2016.
10. Maurya, S., Nguyen, P.T., Seung Kim, Y., and Kang, Q. “Effect of Flow Field Geometry on Operating Current Density, Capacity and Performance of Vanadium Redox Flow Battery”, Journal of Power Sources, Vol. 404, pp. 20–27, 2018.
11. Zhang, B.W., Lei, Y., Bai, B.F., Xu, A., and Zhao, T.S. “A Two-Dimensional Mathematical Model for Vanadium Redox Flow Battery Stacks Incorporating Nonuniform Electrolyte Distribution in the Flow Frame”, Applied Thermal Engineering, 2019.
12. Zhang, B.W., Lei, Y., Bai, B.F., and Zhao, T.S. “A Two-Dimensional Model for the Design of Flow Fields in Vanadium Redox Flow Batteries”, International Journal of Heat and Mass Transfer, Vol. 135 pp. 460–469, 2019.
13. Gundlapalli, R. and Jayanti, S. “Effect of Channel Dimensions of Serpentine Flow Fields on the Performance of a Vanadium Redox Flow Battery, Journal of Energy Storage, Vol. 23, pp. 148–158, 2019.
14. Knudsen, E., Albertus, P., Cho, K.T., Weber, A.Z., and Kojic, A. “Flow Simulation and Analysis of High-Power Flow Batteries”, Journal of Power Sources, Vol. 299, pp. 617-628, 2015.
15. Messaggi, M., Canzi, P., Mereu, R., Baricci, A., Inzoli, F., Casalegno, A., and Zago, M. “Analysis of Flow Field Design on Vanadium Redox Flow Battery Performance: Development of 3D Computational Fluid Dynamic Model and Experimental Validation”, Applied Energy, Vol. 228, pp. 1057–1070, 2018.
16. Oh, K., Kang, T.J., Park, S., Tucker, M.C., Weber, A.Z., and Ju, H. “Effect of Flow-Field Structure on Discharging and Charging Behavior of Hydrogen/Bromine Redox Flow Batteries”, Electrochimica Acta, Vol. 230, pp. 160-173, 2017.
17. Ishitobi, H., Saito, J., Sugawara, S., Oba, K., and Nakagawa, N., “Visualized Cell Characteristics by a Two-Dimensional Model of Vanadium Redox Flow Battery with Interdigitated Channel and Thin Active Electrode”, Electrochimica Acta, Vol. 313, pp. 513-522, 2019.
18. Kumar, S. and Jayanti, S. “Effect of Electrode Intrusion on Pressure Drop and Electrochemical Performance of an All-Vanadium Redox Flow Battery”, Journal of Power Sources, Vol. 360, pp. 548-558, 2017.