Numerical Simulation of Floating of Objects with by pressure field correction of SPH Method

Document Type : Original Article

Authors

1 Master's degree, Malik Ashtar University of Technology, Tehran, Iran

2 Assistant Professor, Malik Ashtar University of Technology, Tehran, Iran

3 Professor, Malik Ashtar University of Technology, Shahin Shahr, Iran

Abstract

In this paper, the Smoothed Particle Hydrodynamics (SPH) method with dynamic boundary condition has been used to simulate 2D floating of objects. Severe fluctuations in the field of pressure and velocity is one of the major problems in this method. In this paper, the fluctuations have been corrected using Delta and Shift algorithms. The simulation was numerically performed with three viscosity models including real fluid viscosity (laminar and turbulence), ideal fluid (without viscosity) and artificial viscosity. Validation of this method indicated that in the case of artificial viscosity and also ideal fluid, the Delta algorithm should be used and in the case of real fluid viscosity, using Delta and Shift algorithms could establish good agreement with experimental data. Finally, by simulating the floating experiment with the obtained optimal numerical models, the results showed that the optimal method in the case of real fluid viscosity had a better performance in modeling the horizontal, vertical and rotational movements of the floating body than other optimal methods.

Keywords


Smiley face

[1]          Lucy, L. B. “A Numerical Approach to the Testing of the Fission Hypothesis”, J. Astron. vol. 82, pp. 1013-1024, 1977.
[2]          Gingold, R. A. and Monaghan, J. J. “Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars”, Mon. Not. R. Astron. Soc. vol. 181, no. 3, pp. 375-389, 1977.
[3]          Monaghan, J. J. “Simulating Free Surface Flows with SPH”, J. Comput. Phys. vol. 110, no. 2, pp. 399-406, 1994.
[4]          Pan, K., IJzermans, R., Jones, B., Thyagarajan, A., van Beest, B., and Williams, J. “Application of the SPH Method to Solitary Wave Impact on an Offshore Platform”, Comput. Part. Mech. vol. 3, no. 2, pp. 155-166, 2016.
[5]          Priyambada, A. and Tarwidi, D. “3D GPU-Based SPH Simulation of Water Waves Impacting on a Floating Object”; ICCREC: IEEE, 2017.
[6]          Buruchenko, S. K. and Canelas, R. B. “Validation of Open-Source SPH Code DualSPHysics for Numerical Simulations of Water Entry and Exit of a Rigid Body”;  Proc. Int. Conf. Offshore Mech. Arct. Eng. - OMAE, 2017.
[7]          Domínguez, J. M., Crespo, A.J.C., Hall, M., Altomare, C., Wu, M., Stratigaki, V., Troch, P., and Cappietti, L. “SPH Simulation of Floating Structures with Moorings”, Coast. Eng. vol. 153, p. 103560, 2019.
[8]          Liu, Z. and Wang, Y. “Numerical Investigations and Optimizations of Typical Submerged Box-Type Floating Breakwaters Using SPH”, Ocean Eng. vol. 209, p. 107475, 2020.
[9]          Cheng, X., Liu, C., Zhang, Q., He, M., and Gao, X. “Numerical Study on the Hydrodynamic Characteristics of a Double-Row Floating Breakwater Composed of a Pontoon and an Airbag”, J. Mar. Sci. Eng. vol. 9, no. 9, p. 983, 2021.
[10]        Chow, A. D., Stansby, P. K., Rogers, B. D., Lind, S. J., and Fang, Q. “Focused Wave Interaction with a Partially-Immersed Rectangular Box Using 2-D Incompressible SPH on a GPU Comparing with Experiment and Linear Theory”, Eur. J. Mech. B-Fluids, 2022.
[11]        Crespo, A.J.C., Domínguez, J.M., Rogers, B.D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., and García-Feal O. “DualSPHysics: Open-Source Parallel CFD Solver Based on Smoothed Particle Hydrodynamics (SPH)”, Comput. Phys. Commun. vol. 187, pp. 204-216, 2015.
[12]        Monaghan, J. J. and Lattanzio, J. C. “A Refined Particle Method for Astrophysical Problems”, Astron. astrophys. vol. 149, pp. 135-143, 1985.
[13]        Monaghan, J. J. “Smoothed Particle Hydrodynamics”, Annu. Rev. Astron. Astr. vol. 30, no. 1, pp. 543-574, 1992.
[14]        Varnousfaaderani, M. R. and Ketabdari, M. “Numerical Simulation of Plunging Wave Breaker Impact by a Modified Turbulent WCSPH Method”, J. Brazil. Soc. Mech. Sci. Eng. vol. 37, no. 2, pp. 507-523, 2015.
[15]        Gotoh, H., Shao, S., and Memita, T. “SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater”, Coast. Eng. vol. 46, no. 1, pp. 39-63, 2004.
[16] Dalrymple, R. A. and Rogers, B. “Numerical Modeling of Water Waves with the SPH Method”, Coast. Eng. vol. 53, no. 2-3, pp. 141-147, 2006.
[17]        Monaghan, J. J., Cas, R. A., Kos, A., and Hallworth, M. “Gravity Currents Descending a Ramp in a Stratified Tank”, J. Fluid Mech. vol. 379, pp. 39-69, 1999.
[18] Batchelor, G. “Introduction to Fluid Dynamics” Cam. Univ. Press., ed: Cambridge, UK, 1974.
[19] Verlet, L. “Computer Experiments on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev. vol. 159, no. 1, p. 98, 1967.
[20] Molteni, D. and Colagrossi, A. “A Simple Procedure to Improve the Pressure Evaluation in Hydrodynamic Context Using the SPH”, Comput. Phys. Commun. vol. 180, no. 6, pp. 861-872, 2009.
[21]        Lind, S. J., Xu, R., Stansby, P. K., and Rogers, B. D. “Incompressible Smoothed Particle Hydrodynamics for Free-Surface Flows: A Generalised Diffusion-Based Algorithm for Stability and Validations for Impulsive Flows and Propagating Waves”, J. Comput. Phys. vol. 231, no. 4, pp. 1499-1523, 2012.
[22] Skillen, A., Lind, S., Stansby, P. K., and Rogers, B. D. “Incompressible Smoothed Particle Hydrodynamics (SPH) with Reduced Temporal Noise and Generalised Fickian Smoothing Applied to Body–Water Slam and Efficient Wave–Body Interaction”, Comput. Method. Appl. M. vol. 265, pp. 163-173, 2013.
[23] Lee, E. S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., and Stansby, P. “Comparisons of Weakly Compressible and Truly Incompressible Algorithms for the SPH Mesh Free Particle Method”, J. comput. Phys. vol. 227, no. 18, pp. 8417-8436, 2008.
[24]        Mokos, A., “Multi-Phase Modelling of Violent Hydrodynamics Using Smoothed Particle Hydrodynamics (SPH) on Graphics Processing Units (GPUs)”, PhD Dissertation, The University of Manchester, UK,  2014.
[25]        Monaghan, J. J., Kos, A., and Issa, N. “Fluid Motion Generated by Impact”, J. Waterw. Port C-Asce. vol. 129, no. 6, pp. 250-259, 2003.
[26]Monaghan, J. J. “Smoothed Particle Hydrodynamics”, Rep. prog. phys. vol. 68, no. 8, p. 1703, 2005.
[27] Raad, P. E. and Bidoae, R. “The Three-Dimensional Eulerian–Lagrangian Marker and Micro Cell Method for the Simulation of Free Surface Flows”, J. Comput. Phys. vol. 203, no. 2, pp. 668-699, 2005.
[28]  Silvester, T. B. and Cleary, P. W. “Wave-Structure Interaction Using Smoothed Particle Hydrodynamics”, A A, vol. 2, p. 2, 2006.
[29]        Hadžić, I., Hennig, J., Perić, M., and Xing-Kaeding, Y. “Computation of Flow-Induced Motion of Floating Bodies”, Appl. math. model. vol. 29, no. 12, pp. 1196-1210, 2005.
[30]Barreiro, A., Crespo, A., Dominguez, J., Garcia-Feal, O., Zabala, I., and Gomez-Gesteira, M. “Quasi-Static Mooring Solver Implemented in SPH”, J. Ocean Eng. vol. 2, no. 3, pp. 381-396, 2016.
[31] Altosole, M., Benvenuto, G., Figari, M., and Campora, U. “Real-Time Simulation of a COGAG Naval Ship Propulsion System”; P. I. Mech. Eng. M-J Eng. vol. 223, no. 1, pp. 47-62, 2009.