Direct Numerical Simulation of Single Layer Quasi-Geostrophic Ocean Circulation

Document Type : Original Article

Authors

1 Space Science and Earth Atmosphere Research Lab., Department of Mechanical Engineering Institute of Aerospace Studies, University of Qom, Iran

2 Master's student, Aerospace Studies Center, Qom University, Qom, Iran

Abstract

In this study, a direct numerical simulation strategy using Arakawa numerical scheme for the barotropic vorticity equation as a single-layer quasi-geostrophic ocean model assuming double-gyre wind force and dissipation has been used. DNS will be compared with the exact solution for two problems with different values of Reynolds and Rossby numbers in order to evaluate the ability of this model to calculate dynamics. The results show that DNS of BVE assuming double-gyre wind force has succeeded in predicting the creation of a turbulent circulation pattern in a short time. In this prediction, it was found that the increase in Reynolds and Rossby numbers will lead to the disappearance of some vortices due to the reduction of the required depreciation for the survival of turbulence over time.

Keywords


Smiley face

  1. Stewart, R. H. “Introduction to physical oceanography”, Oceanography, Texas A&M University Libraries, 2008.
  2. Plata, L., Filonov, A., Tereshchenko, I., Nelly, L., Monzón, C., Avalos, D., and Vargas, C. “Geostrophic currents in the presence of an internal waves field in Bahía de Banderas, México”, e-Gnosis., Vol. 4. No. 18, 2006. Doi: 10.7773/cm.v33i2.1013
  3. Reid, J. L., and Mantyla, A. W. “The effect of the geostrophic flow upon coastal sea elevations in the northern North Pacific Ocean”, J. Geophys. Res. Vol. 81, No. 18, pp. 3100-3110, 1976. Doi: 10.1029/jc081i018p03100
  4. Edwards, T. K., Smith, L. M., and Stechmann, S. N., “Spectra of atmospheric water in precipitating quasi-geostrophic turbulence”, Geophys. Astro. Fluid. Vol. 114, No. 6, pp.715-741, 2020. Doi: 10.1080/03091929.2019.1692205
  5. Arakawa, A., “Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I”, J. Comput. Phys. Vol. 135, No. 2, pp.103-114, 1997. Doi: 10.1006/jcph.1997.5697
  6. Lilly, D. K., “On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems”, Mon. Weather. Rev. Vol. 93, No. 1, pp.11-25, 1965. Doi: 0493(1965)093%3C0011:otcson%3E2.3.co;2
  7. Edwards, T. K., Smith, L. M., and Stechmann, S. N., “Spectra of atmospheric water in precipitating quasi-geostrophic turbulence”, Geophys. Astro. Fluid. Vol. 114, No. 6, pp.715-741, 2020. Doi: 10.1080/03091929.2019.1692205
  8. Barbi, G., Capacci, D., Chierici, A., Chirco, L. Giovacchini, V., and Manservisi, S., “A numerical approach to the fractional Laplacian operator with applications to quasi-geostrophic flows”, J. Phys. pp.012013, 2022. Doi: 10.1088/1742-6596/2177/1/012013
  9. Rahman, S. M., San, O. and Rasheed, A., “A hybrid approach for model order reduction of barotropic quasi-geostrophic turbulence”, Fluids. Vol. 3, No. 4, pp.86, 2018. Doi: 10.3390/fluids3040086
  10. Williamson, D. L., “Integration of the barotropic vorticity equation on a spherical geodesic grid”, Tellus. Vol. 20, No. 4, pp.642-653, 1968. Doi: 10.1111/j.2153-3490.1968.tb00406.x
  11. Li, Y., and Chao, J., “Preferred equilibrium solutions of the barotropic vorticity equation”, Theor. Appl. Climatol. Vol. 141, No. 1-2, pp.433-441, 2020. Doi: 10.1007/s00704-020-03232-1
  12. Abd-el-Malek, M. B., and Amin, A. M., “Lie group method for solving viscous barotropic vorticity equation in ocean climate models”, Computer Math. Appl. Vol. 75, No. 4, pp.1443-1461, 2018. Doi: 10.1016/j.camwa.2017.11.016
  13. Mou, C., Wang, Z., Wells, D. R., Xie., and X. Iliescu, T., “Reduced order models for the quasi-geostrophic equations: A brief survey”, Fluids, Vol. 6, No. 1, pp.16, 2020. Doi: 10.3390/fluids6010016
  14. Jamal, S., “New multipliers of the barotropic vorticity equations”, Anal. Math. Phys. Vol. 10, No. 2, pp.21, 2020. doi: 10.1007/s13324-020-00365-4
  15. Maulik, R., and San, O., “Dynamic modeling of horizontal eddy viscosity coefficient for quasigeostrophic ocean circulation problems”, J. Ocean. Eng. And Sci. Vol. 1, pp.300-324, 2016. Doi: 10.1016/j.joes.2016.08.002
  16. San, O. and Iliescu, T., “A Stabilized proper orthogonal decomposition reduced-order model for large scale quasigeostrophic ocean circulation”, Adv. Comp. Math. Vol. 41, pp.1289-1319, 2015. Doi: 10.1007/s10444-015-9417-0
  17. San, O. Steples, A. E., Wang, Z. and Iliescu, T., “Approximate deconvolution large eddy simulation of barotropic ocean circulation model”, Ocean. Model. Vol. 4, No. 2, 120-132, 2011. doi:10.1016/j.ocemod.2011.08.003

.