Experimental Study of Plasma Effects on the Stagnated and Propagating Flames Properties

Document Type : Original Article

Authors

1 PhD student, Imam Hossein University, Tehran, Iran

2 Associate Professor, University of Tehran, Tehran, Iran

Abstract

Combustion process improvement as one of the most important factors in the energy supplement for different devices has attracted great attention. Recently the concept of plasma assisted combustion as a new approach to increase efficiency and reliability of combustion based systems in the different working conditions has considered. In the present paper, two different experimental setups are used to investigate plasma system effects on the operational characteristics of combustion process. At the first setup, open and confined Bunsen burner is used to study premixed stagnated flame. In this structure flame properties are measured by optical schlieren photography method based on generation and stability of the flame cone. At the second setup, constant volume chamber is used to analyze propagating flame in combustible environment. In this structure high speed schlieren photography from propagating flame front and high frequency pressure measurement is used to study premixed propagating flame. Results indicate that, in the open stagnated flame plasma effects improve the laminar flame speed, in the confined stagnated flame plasma effects improve the flame stability and in the propagating flame plasma effects reduce the ignition delay, develop the lean flammability limit and increase laminar flame speed.

Keywords


Smiley face

 [1]   Fridman, A., and Kennedy, L.A. “Plasma physics and engineering”, CRC press, 2021.
[2]    Ju, Y. “Recent progress and challenges in fundamental combustion research”, Advances in Mechanics, Vol. 44, No. 20, p. 201402, 2014. Doi: 10.6052/1000-0992-14-011.
[3]  Fitzpatrick, R. “Plasma physics: an introduction”, CRC Press, 2014.
[4]   Matveev, I.B., Ardelyan, N., Bychkov, V., Bychkov, D., and Kosmachevskii, K. “Plasma Assisted Combustion, Gasification and Pollution Control”, Outskirts Press, Inc., 2013.
[5]      Starikovskiy, A., and Aleksandrov, N. “Plasma-assisted ignition and combustion, Progress in Energy and Combustion Science”, Vol. 39, No. 1, pp. 61-110, 2013. Doi:10.1016/j.pecs.2012.05.003.
[6]   Raizer, Y. P. “Gas discharge physics”, Springer, New York, 1991.
[7]     Fridman, A. “Plasma chemistry”, Cambridge University Press, 2008.
[8]  Adamovich, I.V., and Lempert, W.R. “Challenges in understanding and predictive model development of plasma-assisted combustion”, Plasma Physics and Controlled Fusion, Vol. 57, No. 1, p. 014001, 2014. Doi:10.1088/0741-3335/57/1/014001.
[9]  Ju, Y., and Sun, W. “Plasma assisted combustion: Progress, challenges, and opportunities”, Combustion and Flame, Vol. 162, No. 3, pp. 529-532, 2015. Doi:10.1016/j.combustflame.2015.01.017.
[10]  Siemens, W. “Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten”, Annalen der Physik, Vol. 178, pp. 66-122, 1857. Doi:10.1002/andp.18571780905.
[11]  Warburg, E. “Über die Ozonisierung des Sauerstoffs durch stille elektrische Entladungen”, Annalen der Physik, Vol. 318, pp. 464-476, 1904. Doi:10.1002/andp.18943180303.
[12]    Otto, M.P. “L'Ozone et ses applications”, E. Chiron, 1929.
[13]     Buss, K. “Die elektrodenlose Entladung nach Messung mit dem Kathodenoszillographen”, Archiv für Elektrotechnik, Vol. 26, pp. 261-265, 1932. Doi:10.1007/BF01657192.
[14]    Massines, F., Rabehi, A., Decomps, P., Gadri, R.B., Ségur, P., and Mayoux, C. “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier”, Journal of Applied Physics, Vol. 83, pp. 2950-2957, 1998. Doi:10.1063/1.367051.
[15]  Massines, F., Segur, P., Gherardi, N., Khamphan, C., and Ricard, A. “Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling”, Surface and Coatings Technology, Vol. 174, pp. 8-14, 2003. Doi:10.1016/S0257-8972(03)00540-1.
[16]  Halter, F., Higelin, P., and Dagaut, P. “Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane”, Energy & fuels, Vol. 25, No. 7, pp. 2909-2916, 2011. Doi:10.1021/ef200550m.
[17]    Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J., and Meeks, E. “PREMIX: A Fortran program for modeling steady laminar one-dimensional premixed flames”, Sandia National Laboratories Report, No. SAND85-8249, 1985.
[18]  Ombrello, T., Won, S.H., Ju, Y., and Williams, S. “Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3”, Combustion and flame, Vol. 157, No. 10, pp. 1906-1915, 2010. Doi:10.1016/j.combustflame.2010.02.005.
[19]  Ombrello, T., Won, S.H., Ju, Y., and Williams, S. “Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg)”, Combustion and Flame, Vol. 157, No. 10, pp. 1916-1928, 2010. Doi:10.1016/j.combustflame.2010.02.004.
[20]     Do, H., Im, S.k., Cappelli, M.A., and Mungal, M.G. “Plasma assisted flame ignition of supersonic flows over a flat wall”, Combustion and Flame, Vol. 157, No. 12, pp. 2298-2305, 2010. Doi:10.1016/j.combustflame.2010.07.006.
[21]   Ehn, A., Hurtig, T., Petersson, P., Zhu, J., Larsson, A., Fureby, C., Larfeldt, J., Li, Z., and Aldén, M. “Setup for microwave stimulation of a turbulent low-swirl flame”, Journal of Physics D: Applied Physics, Vol. 49, No. 18, p.185601, 2016. Doi:10.1088/0022-3727/49/18/185601.
[22]    Eliasson, B., and Kogelschatz, U. “Modeling and applications of silent discharge plasmas”, IEEE transactions on plasma science, Vol. 19, pp. 309-323, 1991. Doi:10.1109/27.106829.
[23]    Golubovskii, Y.B., Maiorov, V., Behnke, J., and Behnke, J. “Modelling of the homogeneous barrier discharge in helium at atmospheric pressure”, Journal of Physics D: Applied Physics, Vol. 36, No. 39, 2002. Doi:10.1088/0022-3727/36/1/306.
[24]    Shin, J., and Raja, L.L. “Dynamics of pulse phenomena in helium dielectric-barrier atmospheric-pressure glow discharges”, Journal of Applied Physics, Vol. 94, pp. 7408-7415, 2003. Doi:10.1063/1.1625414.
[25]      Nishida, H., and Abe, T. “Numerical analysis for plasma dynamics in SDBD plasma actuator”, 41st Plasmadynamics and Lasers Conference, p. 4634, 2010. https://doi.org/10.2514/6.2010-4634.
[26]     Lin, K.M., Hung, C.T., Hwang, F.N., Smith, M.R., Yang, Y.W., and Wu, J.S. “Development of a parallel semi-implicit two-dimensional plasma fluid modeling code using finite-volume method”, Computer Physics Communications, Vol. 183, pp.  1225-1236, 2012. Doi:10.1016/j.cpc.2012.02.001.
[27]   Seaton, A., Godden, D., MacNee, W., and Donaldson, K. “Particulate air pollution and acute health effects”, The lancet, Vol. 345, pp. 176-178, 1995. Doi:10.1016/S0140-6736(95)90173-6.
[28]   Ehn, A., Zhu, J.J., Petersson, P., Li, Z.S., Aldén, M., Fureby, C., Hurtig, T., Zettervall, N., Larsson, A., and Larfeldt, J. “Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations”, Proceedings of the Combustion Institute, Vol. 35, No. 3, pp.3487-3495, 2015. Doi:10.1016/j.proci.2014.05.092.
[29]     Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. “A tensorial approach to computational continuum mechanics using object-oriented techniques”, Computers in physics, Vol. 12, No. 6, pp. 620-631, 1998. Doi:10.1063/1.168744.
[30]  Sabelnikov, V., and Fureby, C. “LES combustion modeling for high Re flames using a multi-phase analogy”, Combustion and Flame, Vol. 160, No. 1, pp. 83-96, 2013. Doi:10.1016/j.combustflame.2012.09.008.
[31]  Fureby, C., Ehn, A., Nilsson, E., Petterson, P., Aldén, M., Hurtig, T., Zettervall, N., Li, Z., and Larfeldt, J. “Investigations of microwave stimulation of turbulent flames with implications to gas turbine combustors”, In 55th AIAA Aerospace Sciences Meeting, p. 1779, 2017. https://doi.org/10.2514/6.2017-1779.
[32]  Nagaraja, S. “Multi-scale modeling of nanosecond plasma assisted combustion”, PhD thesis, Georgia Institute of Technology, 2014.
[33]  Wang, C.C. “Numerical Simulation of Combustion Enhancement Through a Repetitive Pulsed Plasma Actuator”, Journal of Thermophysics and Heat Transfer, 2015. Doi:10.2514/1.T4579.
[34]  Settles, G.S. “Schlieren and shadowgraph techniques: visualizing phenomena in transparent media”, Springer Science & Business Media, 2001.
[35]  Rallis, C.J., and Garforth, A.M. “The determination of laminar burning velocity”, Prog. Energy Combust. Sci., Vol. 6, No. 4, pp. 303–329, 1980. Doi:10.1016/0360-1285(80)90008-8.
[36]   Elattar, H. F., Specht, E., Fouda, A., and BinMahfouz, A.S. “Study of parameters influencing fluid flow and wall hot spots in rotary kilns using CFD”, Can. J. Chem. Eng., Vol. 94, No. 2, pp. 355–367, 2016. Doi:10.1002/cjce.22392.
[37]  Holman, J., “Experimental methods for engineers”, 2001.
[38]    Sun, H., Yang, S.I., Jomaas, G., and Law, C.K. “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proc. Combust. Inst., Vol. 31, No. 1, pp. 439–446, 2007. Doi:10.1016/j.proci.2006.07.193.