Dynamic analysis of fluid flow and selection of optimal nanoparticles for a geometry with 50% blockage

Document Type : Original Article

Authors

1 Associate Professor, Imam Ali University (AS), Tehran, Iran.

2 Master's degree, Sharif University of Technology, Tehran, Iran.

3 Ph.D., Imam Ali University (AS), Tehran, Iran.

4 Assistant Professor, Imam Ali University (AS), Tehran, Iran.

Abstract

Fluid transfer pipes play a key role in connecting different components of fluid systems, especially within the human body's circulatory system. Blockage of the carotid arteries, the primary blood vessels carrying blood from the heart to the brain, is a leading cause of stroke. Therefore, treating carotid artery blockages represents a significant stride in stroke prevention and the enhancement of brain and body function. The most contemporary approach for delivering drugs precisely to damaged arterial regions involves the use of nanoparticles that are fine-tuned in terms of both size and quantity. In this study, a geometry with 50% occlusion is utilized to examine the optimal nanoparticles. Following simulations of fluid flow in the damaged areas and the selection of Fe3O4@MOF nanoparticles with an appropriate surface ligand as a targeted drug carrier, in sizes ranging from 100 to 1000 nm, and with injection numbers of 100, 300, and 500 particles per cycle, the nanoparticle simulations are conducted. Ultimately, the results indicate that particles measuring 100 nm in size, with an injection number of 300 particles per cycle, exhibit the highest degree of adhesion to the target area. Additionally, particles sized at 800 nm, injected at a rate of 100 particles per cycle, demonstrate superior surface and volume drug transfer capabilities. Optimizing the quantity of injected particles notably reduces costs and mitigates potential side effects

Keywords


Smiley face

https://creativecommons.org/licenses/by/4.0/

  1. 1.Van Der Veldt, A.A., Hendrikse, N., Smit, E.F., Mooijer, M.P., Windhorst, A.D., Lammertsma, AA., and Lubberink, M. “Biodistribution and radiation dosimetry of 11 C-labelled docetaxel in cancer patients”, EUR J NUCL MED MOL I, Vol. 37, No., pp.1950-1958, 2010.

    1. Tran, P.H.-L., Tran, T.T.D., Van Vo, T., and Lee, B.J., “Promising iron oxide-based magnetic nanoparticles in biomedical engineering”, ARCH PHARM RES, Vol. 35, No. 12, pp.2045-2061, 2012.
    2. Gao, X., Xu, L.P., Zhou, S.F., Liu, G. and Zhang, X. “Recent advances in nanoparticles-based lateral flow biosensors”, AM J BIOMED SCI, Vol. 6, No. 1, 2014.
    3. Moghimipour, E., Aghel, N., Mahmoudabadi, A.Z., Ramezani, Z., and Handali, S. “Preparation and characterization of liposomes containing essential oil of Eucalyptus camaldulensis leaf”, JUNDISHAPUR J NAT PHARM PROD, Vol. 7, No. 3, pp.117, 2012.
    4. Faraji, A.H. and P. Wipf, “Nanoparticles in cellular drug delivery”, BIOORGAN MED CHEM, Vol. 17, No. 8, pp. 2950-2962, 2009.
    5. Cho, K., Wang, X., Nie, S., and Shin, D.M. “Therapeutic nanoparticles for drug delivery in cancer”, CLIN CANCER RES, Vol. 14, No. 5, pp. 1310-1316, 2008.
    6. Saupe, A., and Rades, T. “Solid lipid nanoparticles, in Nanocarrier technologies”, Springer. pp. 41-50, 2006.
    7. Tsutsui, J.M., Xie, F., and Porter, R.T.“The use of microbubbles to target drug delivery”, CARDIOVASC ULTRASOUN, Vol. 2, No. 1, pp. 1-7, 2004.
    8. Fréchet, J.M., “Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology”, J. POLYM. SCI. A1., Vol. 41, No. 23, pp. 3713-3725, 2003.
    9. Bianco, A., Kostarelos, K., and Prato, M.“Applications of carbon nanotubes in drug delivery”, CURR OPIN CHEM BIOL, Vol. 9, No. 6, pp. 674-679, 2005.
    10. Carné-Sánchez, A., Imaz, I., Cano-Sarabia, M., and Maspoch, D.“A spray-drying strategy for synthesis of nanoscale metal–organic frameworks and their assembly into hollow superstructures”, NAT CHEM, Vol. 5, No. 3, pp. 203-211, 2013.
    11. Kazemi, S., and Safarifard, V.“Carbon dioxide capture in MOFs: The effect of ligand functionalization”, POLYHEDRON, Vol. 154, pp. 236-251, 2018.
    12. Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., Ameloot, R., Evans, J.D., and Doonan, C.J.“Application of metal and metal oxide nanoparticles@ MOFs”, COORDIN CHEM REV, Vol. 307, pp. 237-254, 2016.
    13. Hemmat Esfe, M., Saedodin, S., Wongwises, S., and Toghraie, D.“An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids”, J. THERM ANAL CALORIM, Vol. 119, No., pp. 1817-1824, 2015.
    14. Esfe, M.H., Arani, A.A.A., Rezaie, M., Yan, W.M., and Karimipour, A. “Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid”, INT COMMUN HEAT MASS, Vol. 66, pp. 189-195, 2015.
    15. Esfe, M.H., Wongwises, S., Naderi, A., Asadi, A., Safaei, M.R., Rostamian, H., Dahari, M., and Karimipour, A.“Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation”, INT COMMUN HEAT MASS, Vol. 66, pp. 100-104, 2015.
    16. Esfe, M.H., Toghraie, D., Alidoust, S., Esfandeh, S., and Ardeshiri, E.M.“Laboratory study and statistical analysis of MWCNT (40%)-TiO2 (60%)/10W40 nanoparticles as potential new hybrid nano-lubricant”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 647, pp. 129078, 2022.
    17. Hemmat Esfe, M., “Designing an artificial neural network using radial basis function (RBF-ANN) to model thermal conductivity of ethylene glycol–water-based TiO 2 nanofluids”, J THERM ANAL CALORIM, Vol. 127, pp. 2125-2131, 2017.
    18. Esfe, M.H., Toghraie, D., and Alidoust, S. “Experimental analysis on the rheological characteristics of MWCNT-ZnO (50: 50)/5W30 oil non-Newtonian hybrid nanofluid to obtain a new correlation”, POWDER TECHNOL, Vol. 407, pp. 117595, 2022.
    19. Lübbe, A.S., C. Alexiou, and C. Bergemann, “Clinical applications of magnetic drug targeting”, J SURG RES, Vol. 95, No. 2, pp.200-206, 2001.
    20. Rapoport, N., Christensen, D., Fain, H., Barrows, L., and Gao, Z.“Ultrasound-triggered drug targeting of tumors in vitro and in vivo”, ULTRASONICS, Vol. 42, No. 1-9, pp. 943-950, 2004.
    21. Ranjbar, H., Farajollahi, A., and Rostami, M. “Targeted drug delivery in pulmonary therapy based on adhesion and transmission of nanocarriers designed with a metal–organic framework”, Biomech Model Mechanobiol, Vol. 22, pp. 2153–2170, 2023.
    22. Meyer, D.E., Shin, B., Kong, G., Dewhirst, M., and Chilkoti, A. “Drug targeting using thermally responsive polymers and local hyperthermia”, J CONTROL RELEASE, Vol. 74, No. 1-3, pp. 213-224, 2001.
    23. Langer, R., “Drug delivery and targeting”, NATURE, Vol. 392, No. 6679 Suppl, pp. 5-10, 1998.
    24. Hirsjarvi, S., Passirani, C., and Benoit, J.P. “Passive and active tumour targeting with nanocarriers”, CURR DRUG DISCOV TECNOL, Vol. 8, No. 3, pp. 188-196, 2011.
    25. Gu, F.X., Karnik, R., Wang, A.Z., Alexis, F., Levy-Nissenbaum, E., Hong, S., Langer, R.S., and Farokhzad, O.C. “Targeted nanoparticles for cancer therapy”, NANO TODAY, Vol. 2, No. 3, pp. 14-21, 2007.
    26. Shamloo, A., A. Amani, M. Forouzandehmehr, and I. Ghoytasi, “In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque”, INT J PHARM, Vol. 559, pp. 113-129, 2019.
    27. Zhang, J., Zu, Y., Dhanasekara, C.S., Li, J., Wu, D., Fan, Z., and Wang, S. “Detection and treatment of atherosclerosis using nanoparticles”, WIRES NANOMED NANOBI, Vol. 9, No. 1, pp.e 1412, 2017.
    28. Feigin, V.L., Brainin, M., Norrving, B., Martins, S., Sacco, R.L., Hacke, W., Fisher, M., Pandian, J., and Lindsay, P. “World Stroke Organization (WSO): global stroke fact sheet 2022”, INT J STROKE, Vol. 17, No. 1, pp. 18-29, 2022.
    29. Gasull, T., and Arboix, A. “Molecular mechanisms and pathophysiology of acute stroke: Emphasis on biomarkers in the different stroke subtypes”, MDPI. pp. 9476, 2022.
    30. Manzoori, A., Fallah, F., Sharzehee, M., and Ebrahimi, S. “Computational Investigation of the Stability of Stenotic Carotid Artery under Pulsatile Blood Flow Using a Fluid-Structure Interaction Approach”, Vol. 12, No. 10, pp. 2050110, 2020.
    31. Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., and Mofrad, M.R. “Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields”, ENG APPL COMP FLUID, Vol. 15, No. 1, pp. 1703-1725, 2021.
    32. Sanyal, A., and Han, H.C. “Artery buckling affects the mechanical stress in atherosclerotic plaques”, BIOMED ENG ONLINE, Vol. 14, No. 1, pp. 1-10, 2015.
    33. Howe, G.L. “A Multiphysics Simulation of a Coronary Artery”, MSc Dissertation, Faculty of California Polytechnic State University, San Luis Obispo, 2013.
    34. Kwon, O., Krishnamoorthy, M., Cho, Y.I., Sankovic, J.M., and Banerjee, R.K. “Effect of blood viscosity on oxygen transport in residual stenosed artery following angioplasty”, J BIOMECH ENG, Vol. 130, No. 1, 2008.
    35. McLean, D. “Continuum Fluid Mechanics and the Navier-Stokes Equations”, Understanding Aerodynamics: Arguing from the Real Physics Doug McLean, pp. 13-78, 2012.
    36. Gori, F., and Boghi, A. “Two new differential equations of turbulent dissipation rate and apparent viscosity for non-newtonian fluids”, INT COMMUN HEAT MASS, Vol. 38, No. 6, pp. 696-703, 2011.
    37. Gori, F., and Boghi, A. “A three dimensional exact equation for the turbulent dissipation rate of Generalised Newtonian Fluids”, INT COMMUN HEAT MASS, Vol. 39, No. 4, pp. 477-485, 2012.
    38. Currie, I.G., “Fundamental mechanics of fluids”, CRC press, 2016.
    39. Hirata, K., Yaginuma, T., O’Rourke, M.F., and Kawakami, M. “Age-related changes in carotid artery flow and pressure pulses: possible implications for cerebral microvascular disease”, STROKE, Vol. 37, No. 10, pp. 2552-2556, 2006.
    40. Manzoori, A., Fallah, F., Sharzehee, M., and Ebrahimi, S. “Computational investigation of the stability of stenotic carotid artery under pulsatile blood flow using a fluid-structure interaction approach”, International Journal of Applied Mechanics, Vol. 12, No. 10, pp. 2050110, 2020.
  • Receive Date: 14 July 2023
  • Revise Date: 11 December 2023
  • Accept Date: 08 January 2024
  • Publish Date: 19 February 2024