Design of mixed flow pump and its numerical and parametric analysis using computational fluid dynamics

Document Type : Original Article

Authors

1 Master's degree, Malek Ashtar University of Technology, Tehran, Iran

2 Associate Professor, Malik Ashtar University of Technology, Tehran, Iran

3 Assistant Professor, Malik Ashtar University of Technology, Tehran, Iran

Abstract

Mixed-flow pumps have a wide application, high efficiency and wide range of head changes. One of the most important issues in Mixed-flow pumps is transient operation. AS for the complexity of Mixed-flow pump geometry and complexity in simulation, especially in the transient state, transient flow analysis in Mixed-flow pump has been less discussed. In this paper, a Mixed-flow pump was designed using CFturbo software and analyzed during steady state and transient process using CFX software. To ensure the correctness of the numerical results, a validation was carried out that the numerical results were in good agreement with the Experimental results. two parametric studies including the effect of changing the blade outlet angle in four different angles in the steady state and two angles in the transient state and the effect of changing the pump rotational speed on its performance were investigated. The efficiency with the increase of blade exit angle up to 26 degrees, the efficiency increased and then decreased, and by changing the blade outlet angle from 22.5 to 31 degrees, the pump head increases by about 23%. The head is proportional to the increase or decrease in speed and the efficiency decreased with the reduction of the rotational speed compared to the design point, and there was no significant change with the increase of the rotational speed compared to the design point. During the transient process, a maximum momentary pressure was observed which is about 27% higher than the design head. Pump head changes in this case are divided into three steps. In the first step, the head increases linearly, then in the second step, a momentary maximum pressure occurs, in the last step, the head curve tends to be stable.

Keywords


Smiley face

https://creativecommons.org/licenses/by/4.0/

1.       J. F. Gülich and J. F. Gülich, Operation of Centrifugal Pumps (Centrifugal Pumps). 2010, pp. 665-714.
2.       G. Wislicensus, "The Design of Mixed Flow Pumps," in Proceedings of the Symposium Held at the NEL Glasgow, 1965. 
3.       D. J. Myles, A Design Method for Mixed-Flow Fans and Pumps. Department of Scientific and Industrial Research, 1965.
4.       A. J. Stepanoff, "Centrifugal and Axial Flow Pumps," Theory, Design, and Application, 1957.
5.       F. A. Muggli, P. Holbein, and P. Dupont, "CFD Calculation of a Mixed Flow pump Characteristic From Shutoff to Maximum Flow," J. Fluids Eng., vol. 124, no. 3, pp. 798-802, 2002, doi: 10.1115/1.1478061.
6.       J.-H. Kim, H.-J. Ahn, and K.-Y. Kim, "High-efficiency design of a mixed-flow pump," Science in China Series E: Technological Sciences, vol. 53, no. 1, pp. 24-27, 2010, doi: 10.1007/s11431-009-0424-6.
7.       H. Bing and S. Cao, "Three-Dimensional Design Method for Mixed-Flow pump Blades With Controllable Blade wrap Angle," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 227, no. 5, pp. 567-584, 2013, doi: 10.1177/0957650913489296.
8.       S. Chaudhari, C. Yadav, and A. Damor, "A Comparative Study of Mix Flow Pump Impeller cfd Analysis and Experimental data of Submersible pump," International Journal of Research in Engineering & Technology (IJRET), vol. 1, no. 3, pp. 57-64, 2013.
9.       A. M. A. M. Akhlaghi, Sh. Jazayeri Moghaddas, and Y. Azizi, "Conceptual Design of a Centrifugal Compressor Impeller for a 65 KW MicroGas Turbine," Journal of Fluid Mechanics and Aerodynamics, vol. 4, no. 1, pp. 1-16, 2015 (in Persian).
10.    M. R. E. a. A. R. R. M. Tashakori Bafghi, "Numerical Analysis of Fluid Structure Interaction Phenomenon on a Turbine Blade," Journal of Fluid Mechanics and Aerodynamics, vol. 4, no. 2, pp. 11-1, 2016 (in Persian).
11.    H. Mirzabeh, M. Bazazzadeh, and E. V. a. M. J. Montazeri, "Numerical and Experimental Analyzes of Inner Stream and its Effect on Formation of Spray Angle at Dual-Base Swirl Injector in a Liquid Engine," Journal of Fluid Mechanics and Aerodynamics, vol. 3, no. 2, pp. 35-46, 2015 (in Persian).
12.    A. Sekhavat Benis and R. Aghaei Togh, "Tree-Dimensional Study of the Effect of Tandem Compressor Pressure Ratio on Downstream Vortices," Journal of Fluid Mechanics and Aerodynamics, vol. 11, no. 1, pp. 145-158, 2022 (in Persian).
13.    J. Mao, S. Yuan, J. Pei, J. Zhang, and W. Wang, "Applications of Different Turbulence Models in Simulations of a large Annular Volute-Type Pump with the Diffuser," in IOP Conference Series: Earth and Environmental Science, 2014, vol. 22, no. 2: IOP Publishing, p. 022019, doi: 10.1088/1755-1315/22/2/022019. 
14.    W. Li, Y. Zhang, W. Shi, L. Ji, Y. Yang, and Y. Ping, "Numerical Simulation of Transient Flow Field in a Mixed-flow Pump During Starting Period," International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28, no. 4, pp. 927-942, 2018, doi: 10.1108/HFF-06-2017-0220.
15.    W. Cao, W. Li, L. Ji, W. Shi, Z. Lu, and R. K. Agarwal, "Research of Transient Rotor–Stator Interaction Effect in a Mixed-Flow pump under Part-load Conditions," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 42, pp. 1-15, 2020, doi: 10.1007/s40430-019-2110-3.
16.    L. Ji, W. Li, W. Shi, and R. Agarwal, "Transient Characteristics of internal Flow Fields of mixed-Flow Pump with Different Tip Clearances under Stall Condition," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 235, no. 4, pp. 700-717, 2021, doi: 10.1177/0957650920962250.
17.    L. Yangping, M. Can, T. Lei, and H. Yadong, "Theoretical Model of Transient Mixed-Flow pump Start-up," Journal of Tsinghua University (Science and Technology), vol. 62, no. 12, pp. 1938-1944, 2022, doi: 10.16511/j.cnki.qhdxxb.2022.26.007.
18.    H. Zhang, F. Meng, L. Cao, Y. Li, and X. Wang, "The Influence of a Pumping Chamber on Hydraulic Losses in a Mixed-Flow Pump," Processes, vol. 10, no. 2, p. 407, 2022, doi: 10.3390/pr10020407.
19.    M. Liu, Y. Han, L. Tan, Y. Lu, C. Ma, and J. Gou, "Theoretical Prediction Model of Transient Performance for a Mixed flow Pump under Fast Start-up Conditions," Physics of Fluids, vol. 35, no. 2, 2023, doi: 10.1063/5.0138575.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Volume 12, Issue 2 - Serial Number 32
Autumn and winter 2023
March 2024
Pages 131-142
  • Receive Date: 16 October 2023
  • Revise Date: 22 December 2023
  • Accept Date: 30 January 2024
  • Publish Date: 19 February 2024