Numerical investigation of heat and fluid features on a flat plate affected by a self-oscillator impingement jet

Document Type : Original Article

Authors

1 Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran

2 C-MAST-Center for Mechanical and Aerospace Science and Technology, Universidade da Beira Interior, Covilha, PortugalCovilha, Portugal

Abstract

In this study, the flow field and the impingement heat transfer of fluidic oscillators at narrow spaces are investigated numerically. Simulations are performed in 2-D, incompressible, and unsteady conditions and the aim is to analyze the effects of the jet to wall distance, the external nozzle angle, the Reynolds number, and removing the external nozzle on the heat transfer performance. Also, for a comprehensive review, the results of the fluidic oscillator are compared with the results of the steady jet. To ensure the validity of the numerical simulations, two experimental researches are applied for the fluidic oscillator and the steady jet and a good agreement is observed between the present simulations and the experimental data. The results show that increasing the distance in fluidic oscillators causes a maximum decrease of about 11% at the Nusselt number of the stagnation point, while employing the various distances does not have a significant effect on the steady jet. In addition, the configuration of the different external nozzle angles affects the Nusselt number, but this influence does not have a monotonic behavior. Furthermore, the Nusselt number increases by removing the external nozzle. When the Reynolds number increases for the fluidic oscillator and the steady jet, the Nusselt number of the stagnation point increases by at least about 22 and 28%, respectively.

Keywords


Smiley face

https://creativecommons.org/licenses/by/4.0/

[1]         H. M. Maghrabie, “Heat transfer intensification of jet impingement using exciting jets - A comprehensive review,” Renew. Sustain. Energy Rev., vol. 139, no. September 2020, p. 110684, 2021, doi: 10.1016/j.rser.2020.110684.
[2]         M. A. Hossain, “Sweeping Jet Film Cooling,” 2020.
[3]         M. A. Hossain, R. Prenter, R. K. Lundgreen, A. Ameri, J. W. Gregory, and J. P. Bons, “Experimental & numerical investigation of sweeping jet film cooling,” Proc. ASME Turbo Expo, vol. 5C-2017, no. June, 2017, doi: 10.1115/GT2017-64479.
[4]         W. Zhou, L. Yuan, Y. Liu, D. Peng, and X. Wen, “Heat transfer of a sweeping jet impinging at narrow spacings,” Exp. Therm. Fluid Sci., vol. 103, no. November 2018, pp. 89–98, 2019, doi: 10.1016/j.expthermflusci.2019.01.007.
[5]         M. Koklu, “Effect of a coanda extension on the performance of a sweeping-jet actuator,” AIAA J., vol. 54, no. 3, pp. 1125–1128, 2016, doi: 10.2514/1.J054448.
[6]         S. Ghanami and M. Farhadi, “Fluidic Oscillators’ Applications, Structures and Mechanisms– A review,” vol. 7, no. 1, pp. 9–27, 2019, doi: 10.22111/tpnms.2018.25051.1153.
[7]         R. Abdelmaksoud and T. Wang, “A Review on Thermal-Fluid Behavior in Sweeping Jet Fluidic Oscillators,” pp. 979–1003, 2021, doi: 10.1615/tfec2021.hte.036836.
[8]         A. Spens and J. P. Bons, “Experimental investigation of synchronized sweeping jets for film cooling applications,” AIAA Scitech 2021 Forum, no. January, pp. 1–15, 2021, doi: 10.2514/6.2021-2003.
[9]         L. Agricola et al., “Impinging sweeping jet heat transfer,” 53rd AIAA/SAE/ASEE Jt. Propuls. Conf. 2017, no. July, pp. 1–18, 2017, doi: 10.2514/6.2017-4974.
[10]      M. A. Hossain, L. M. Agricola, A. Ameri, J. W. Gregory, and J. P. Bons, “Effects of curvature on the performance of sweeping jet impingement heat transfer,” in AIAA Aerospace Sciences Meeting, 2018, 2018, no. 210059. doi: 10.2514/6.2018-0243.
[11]      T. Park, K. Kara, and D. Kim, “Flow structure and heat transfer of a sweeping jet impinging on a flat wall,” Int. J. Heat Mass Transf., vol. 124, pp. 920–928, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.04.016.
[12]      M. A. Hossain, L. M. Agricola, A. Ameri, J. W. Gregory, and J. P. Bons, “Effects of exit fan angle on the heat transfer performance of sweeping jet impingement,” 2018 Int. Energy Convers. Eng. Conf., no. May 2019, 2018, doi: 10.2514/6.2018-4886.
[13]      Y. Wu, S. Yu, and L. Zuo, “Large eddy simulation analysis of the heat transfer enhancement using self-oscillating fluidic oscillators,” Int. J. Heat Mass Transf., vol. 131, pp. 463–471, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.11.070.
[14]      L. Agricola, M. A. Hossain, A. Ameri, J. W. Gregory, and J. P. Bons, “Sweeping jet impingement heat transfer on a simulated turbine vane leading edge,” Proc. ASME Turbo Expo, vol. 5A-2018, no. May, 2018, doi: 10.1115/GT2018-77073.
[15]      S. H. Kim, H. D. Kim, and K. C. Kim, “Measurement of two-dimensional heat transfer and flow characteristics of an impinging sweeping jet,” Int. J. Heat Mass Transf., vol. 136, pp. 415–426, 2019, doi: 10.1016/j.ijheatmasstransfer.2019.03.021.
[16]      D. J. Kim, S. Jeong, T. Park, and D. Kim, “Impinging sweeping jet and convective heat transfer on curved surfaces,” Int. J. Heat Fluid Flow, vol. 79, no. May, p. 108458, 2019, doi: 10.1016/j.ijheatfluidflow.2019.108458.
[17]      M. A. Hossain, A. Ameri, J. W. Gregory, and J. Bons, “Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer,” no. April, 2021, doi: 10.2514/1.J059931.
[18]      A. Joulaei, M. Nili-Ahmadabadi, and K. Chun Kim, “Parametric study of a fluidic oscillator for heat transfer enhancement of a hot plate impinged by a sweeping jet,” Appl. Therm. Eng., vol. 205, no. December 2021, p. 118051, 2022, doi: 10.1016/j.applthermaleng.2022.118051.
[19]      A. Joulaei, M. Nili-ahmadabadi, K. Chun, and M. Yeong, “Phosphor thermometry evaluation of heat transfer enhancement on a hot plate achieved by a vortex-based fluidic oscillator,” Therm. Sci. Eng. Prog., vol. 47, no. November 2023, p. 102269, 2024, doi: 10.1016/j.tsep.2023.102269.
[20]      A. Joulaei, M. Nili-Ahmadabadi, and M. Yeong Ha, “Numerical study of the effect of geometric scaling of a fluidic oscillator on the heat transfer and frequency of impinging sweeping jet,” Appl. Therm. Eng., vol. 221, p. 119848, 2023, doi: 10.1016/j.applthermaleng.2022.119848.
[21]      R. D. Stouffer, “Oscillating spray device,” US4151955A, 1979
[22]      F. R. Menter, “Performance of popular turbulence models for attached and separated adverse pressure gradient flows,” AIAA J., vol. 30, no. 8, pp. 2066–2072, 1992, doi: 10.2514/3.11180.
[23]      F. R. Menter, M. Kuntz, and R. Langtry, “Ten Years of Industrial Experience with the SST Turbulence Model,” 2003.
[24]      ANSYS, “CFD EXPERTS Simulate the Future,” 2021.
[25]      R. Gardon and J. C. Akfirat, “Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets,” pp. 1–7, 2016.
[26]      R. Gardon and J. C. Akfirat, “Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets. J Heat Transfer. 1966;88:101. ensional Air Jets,” J. Heat Transfer, vol. 88, p. 101, 1966.
 
 
  • Receive Date: 24 November 2023
  • Revise Date: 22 January 2024
  • Accept Date: 07 February 2024
  • Publish Date: 28 February 2024