Prediction and estimation of vulnerability pipes due to cavitation phenomenon

Document Type : Original Article

Authors

1 Associate Professor, Imam Ali University, Tehran, Iran

2 Assistant Professor, Imam Ali University, Tehran, Iran

Abstract

Cavitation is a process that involves the generation, transport (along with the liquid), and collapse of bubbles upon impact with internal walls. The primary objective of this study is to examine the movement of generated microbubbles and estimate the frequency of bubble impacts on the walls of pipes with varying degrees of surface clogging and pipes with bends, considering different inlet flow rates. This analysis aims to evaluate the vulnerability to damage due to bubble impacts in each of these geometries. The simulation results for clogged pipes indicate that the higher the degree of clogging, the greater the likelihood of microbubble impacts on the clogged area and their subsequent collapse, which significantly increases the potential for pipe wall damage. Additionally, for pipes with high clogging percentages (above 36%) , the likelihood of wall damage dramatically increases with higher fluid inlet velocities. Conversely, in pipes with low clogging percentages (below 36%) , lower fluid inlet velocities increase the likelihood of microbubble impacts on the clogged walls, thereby also increasing the potential for pipe damage.

Keywords


Smiley face

[1]          Brennen, C. “A numerical solution of axisymmetric cavity flows”, J. Fluid Mech. 37 (1969). DOI:10.1017/S0022112069000802.
[2]          Acosta, A.J., and Parkin, B.R. “Cavitation inception - a selective review”, (1974). https://doi.org/10.5957/jsr.1975.19.4.193.
[3]          Hu, C., Yang, H.L., Zhao, C.B., and Huang, W.H. “Unsteady supercavitating flow past cones”, J. Hydrodyn. 18 (2006). DOI:10.1016/S1001-6058(06)60002-4.
[4]          Gavzan, I.J., and Rad, M. “Experimental analysis of cavitaion effects on drag force and back pressure of circular cylinder with free turbulence”, Sci. Iran. 16 (2009).
[5]          Biluš, I., Bombek, G., Hočevar, M., Širok, B., Cenčič, T., and Petkovšek, M. “The experimental analysis of cavitating structure fluctuations and pressure pulsations in the cavitation station, Stroj”, Vestnik/Journal Mech. Eng. 60 (2014). DOI:10.5545/sv-jme.2013.1462.
[6]          Sedlá, M., Komárek, M., Rudolf, P., Kozák, J., and Huzlík, R. “Numerical and experimental research on unsteady cavitating flow around NACA 2412 hydrofoil”, in: IOP Conf. Ser. Mater. Sci. Eng., 2015. DOI:10.1088/1757-899X/72/2/022014.
[7]          Sarrashtari, A., and Najafi, V. “Comparison and appropriate selection of mass transfer models for predicting cavitation in internal flows”, Fluid Mechanics and Aerodynamics, 1392;2(2). .
[11]        Shamloo, A., Ebrahimi, S., Amani, A., and Fallah, F. “Targeted Drug Delivery of Microbubble to Arrest Abdominal Aortic Aneurysm Development: A Simulation Study Towards Optimized Microbubble Design”, Sci. Rep. (2020). DOI:10.1038/s41598-020-62410-3.
[12]        Ebrahimi, S., Shamloo, A., Alishiri, M., Mozhdehbakhsh Mofrad, Y., and Akherati, F. “Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion”, Int. J. Pharm. (2021) 121133. DOI:10.1016/j.ijpharm.2021.121133.
[13]        Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., and Mofrad, M.R.K. “Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields”, Eng. Appl. Comput. Fluid Mech. 15 (2021) 1703–1725. https://doi.org/10.1080/19942060.2021.1989042.
[14]        Shamloo, A., Amani, A., Forouzandehmehr, M., and Ghoytasi, I. “In Silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque”, Int. J. Pharm. (2019). DOI:10.1016/j.ijpharm.2018.12.088.
[15]        Kim, C.S., Iglesias, A.J., and Garcia, L. “Deposition of Inhaled Particles in Bifurcating Airway Models: II. Expiratory Deposition”, J. Aerosol Med. Depos. Clear. Eff. Lung. 2 (1989). https://doi.org/10.1089/jam.1989.2.15.
[16]        Amani, A., Shamloo, A., Vatani, P., and Ebrahimi, S. “Particles Focusing and Separation by a Novel Inertial Microfluidic Device: Divergent Serpentine Microchannel”, Ind. Eng. Chem. Res. 0 (n.d.) null. https://doi.org/10.1021/acs.iecr.2c02451.
[17]        Manzoori, A., Fallah, F., Sharzehee, M., and Ebrahimi, S., “Computational Investigation of the Stability of Stenotic Carotid Artery under Pulsatile Blood Flow Using a Fluid-Structure Interaction Approach”, Int. J. Appl. Mech. 12 (2020) 1758–8251. https://doi.org/10.1142/S1758825120501100.
[18]         Farajollahi, A., Mokhtari, A., Rostami, M., Imani, K., and Salimi, M. “Numerical study of using perforated conical turbulators and added nanoparticles to enhance heat transfer performance in heat exchangers”, Scientia Iranica, 2023, 30(3), pp. 1027-1038. doi: 10.24200/sci.2022.59717.6394
[19]         Ranjbar, H., Farajollahi, A. and Rostami, M. “Targeted drug delivery in pulmonary therapy based on adhesion and transmission of nanocarriers designed with a metal–organic framework”, Biomech Model Mechanobiol 22, 2153–2170 (2023). https://doi.org/10.1007/s10237-023-01756-9
[20]         Saleh-Abadi, M., Rostami, M., and Farajollahi, A. “Successive expansion and contraction of tubes (SECTs) in a novel design of shell-and-tube heat exchanger: a comparison between basic, finned and non-finned designs”, J Braz. Soc. Mech. Sci. Eng. 45, 444 (2023). DOI:10.1007/s40430-023-04356-x.
[21]         Saleh-Abadi, M., Rahmati, A., Farajollahi, A. et al. “Optimization of geometric indicators of a ventricular pump using computational fluid dynamics, surrogate model, response surface approximation, kriging and particle swarm optimization algorithm”, J Braz. Soc. Mech. Sci. Eng. 45, 431 (2023). DOI:10.1007/s40430-023-04355-y
 [24]        Avecilla, F.R.B., Farajollahi, A., Rostami, M. Yadav, A., and Flores, J. “Successive expansion and contraction of tubes (SECT) in a novel design of shell-and-tube heat exchanger: entropy generation analysis”, J Braz. Soc. Mech. Sci. Eng. 46, 267 (2024). DOI:10.1007/s40430-024-04850-w.
[25]        Amani, A., and Farajollahi, A.H. “Drug Delivery Angle for Various Atherosclerosis and Aneurysm Percentages of the Carotid Artery”, Molecular Pharmaceutics, 2024 21 (4), 1777-1793, DOI: 10. 021/acs.molpharmaceut.3c01109.
[26]        Ebrahimi, S., and Fallah, F. “Investigation of coronary artery tortuosity with atherosclerosis: A study on predicting plaque rupture and progression”, Int. J. Mech. Sci. 223 (2022) 107295. DOI:10.1016/j.ijmecsci.2022.107295.
[27]        Segré, G., and Silberberg, A. “Radial particle displacements in poiseuille flow of suspensions, Nature. 189 (1961). DOI:10.1038/189209a0.
[28]        Di Carlo, D. “Inertial microfluidics, Lab Chip”, 9 (2009). DOI:10.1039/b912547g.
[30] Tahani, M., Rabbani, A., Kasaeian, A., Mehrpooya, M., and Mirhosseini, M. “Design and numerical
investigation of Savonius wind turbine with discharge flow directing capability”. Energy., Vol. 130, pp. 327-38, 2017. Doi: 10.1016/j.energy.2017 .04.125.
[31] Hassanzadeh, R. and Mohammad, N. M. “Effect of Overlapping Size on the Performance of the Savonius Wind Turbine, in Both Conventional and the Bach-Type Models”. Modares Mechanical Engineering., Vol. 85, pp. 2599-2606, 2019. (In Persian).
Volume 13, Issue 1 - Serial Number 33
Spring and summer 2024
September 2024
Pages 43-56
  • Receive Date: 11 March 2024
  • Revise Date: 14 June 2024
  • Accept Date: 06 July 2024
  • Publish Date: 22 July 2024