Experimental study of thermal conductivity in a hybrid nanofluid (MWCNT and SiO2) in the base fluids of ethylene glycol and water and presentation of a new experimental Correlation

Document Type : Original Article

Authors

1 Associate Professor, Imam Hossein University , Tehran, Iran

2 Master's student, Imam Hossein University , Tehran, Iran

Abstract

This experimental study investigates the thermal properties and conductivity of a hybrid nanofluid composed of 89 % SiO2 and 11 % MWCNT in a mixture of 45 % ethylene glycol and 55 % water . The nanofluid was prepared using a two - step method, and its thermal conductivity was measured across various volume fractions ( ranging from 0.1 % to 1.45 % ) and temperatures ( from 26.7°C to 50°C ) using a KD2 Pro device . The results indicated a 25.1 % increase at a volume fraction of 1.45 % and a temperature of 50° C . By employing the response surface method, a 5th -degree polynomial equation accurately describes the complex interaction between temperature and volume fraction (R2 = 0.9996) . The model's high accuracy is demonstrated by a Response surface method margin of deviation ranging from 0 . 238 % to 0 . 355 % .

Keywords


Smiley face

1.       M. Sepehrnia, K. Mohammadzadeh, M. M. Veyseh, E. Agah, and M. Amani, "Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling," Powder Technology, vol. 404, p. 117492, 2022. https://doi.org/10.1016/j.powtec.2022.117492
2.       A. Selmani, D. Kovačević, and K. Bohinc, "Nanoparticles: From synthesis to applications and beyond," Advances in Colloid and Interface Science, vol. 303, p. 102640, 2022. https://doi.org/10.1016/j.cis.2022.102640
3.       Y. Yang, Y. Du, J. Zhang, H. Zhang, and B. Guo, "Structural and functional design of electrospun nanofibers for hemostasis and wound healing," Advanced Fiber Materials, vol. 4, no. 5, pp. 1027-1057, 2022. https://doi.org/10.1007/s42765-022-00178-z
4.       A. K. Hamzat, M. I. Omisanya, A. Z. Sahin, O. R. Oyetunji, and N. A. Olaitan, "Application of nanofluid in solar energy harvesting devices: A comprehensive review," Energy Conversion and Management, vol. 266, p. 115790, 2022. https://doi.org/10.1016/j.enconman.2022.115790
5.       J. C. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell: Volume 1, 1846-1862. CUP Archive, 1990.
6.       S. U. Choi and J. A. Eastman, "Enhancing thermal conductivity of fluids with nanoparticles," Argonne National Lab.(ANL), Argonne, IL (United States), 1995. 
7.       K. Hosseinzadeh, M. E. Moghaddam, M. Hatami, D. Ganji, and F. Ommi, "Experimental and numerical study for the effect of aqueous solution on heat transfer characteristics of two phase close thermosyphon," International Communications in Heat and Mass Transfer, vol. 135, p. 106129, 2022. https://doi.org/10.1016/j.icheatmasstransfer.2022.106129
8.       H. Younes, M. Mao, S. S. Murshed, D. Lou, H. Hong, and G. Peterson, "Nanofluids: Key parameters to enhance thermal conductivity and its applications," Applied Thermal Engineering, vol. 207, p. 118202, 2022. https://doi.org/10.1016/j.applthermaleng.2022.118202
9.       J. Wohld et al., "Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background," Nanomaterials, vol. 12, no. 16, p. 2847, 2022. https://doi.org/10.3390/nano12162847
10.    M. Yasir, A. Hafeez, and M. Khan, "Thermal conductivity performance in hybrid (SWCNTs-CuO/Ehylene glycol) nanofluid flow: Dual solutions," Ain Shams Engineering Journal, vol. 13, no. 5, p. 101703, 2022. https://doi.org/10.1016/j.asej.2022.101703
11.    M. Rashidi, M. Alhuyi Nazari, I. Mahariq, and N. Ali, "Modeling and sensitivity analysis of thermal conductivity of ethylene glycol-water based nanofluids with alumina nanoparticles," Experimental Techniques, vol. 47, no. 1, pp. 83-90, 2023. https://doi.org/10.1007/s40799-022-00567-4
12.    L. Qiu et al., "A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids," Physics Reports, vol. 843, pp. 1-81, 2020. https://doi.org/10.1016/j.physrep.2019.12.001
13.    G. Paul, T. Pal, and I. Manna, "Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique," Journal of colloid and interface science, vol. 349, no. 1, pp. 434-437, 2010. https://doi.org/10.1016/j.jcis.2010.05.086
14.    M. Gupta, V. Singh, S. Kumar, S. Kumar, N. Dilbaghi, and Z. Said, "Up to date review on the synthesis and thermophysical properties of hybrid nanofluids," Journal of cleaner production, vol. 190, pp. 169-192, 2018. https://doi.org/10.1016/j.jclepro.2018.04.146
15.    S. Suresh, K. Venkitaraj, P. Selvakumar, and M. Chandrasekar, "Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer," Experimental Thermal and Fluid Science, vol. 38, pp. 54-60, 2012. https://doi.org/10.1016/j.expthermflusci.2011.11.007
16.    L. S. Sundar, M. K. Singh, and A. C. Sousa, "Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids," International Communications in Heat and Mass Transfer, vol. 52, pp. 73-83, 2014. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
17.    M. Batmunkh et al., "Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle," Industrial & Engineering Chemistry Research, vol. 53, no. 20, pp. 8445-8451, 2014. https://doi.org/10.1021/ie403712f
18.    T. T. Baby and S. Ramaprabhu, "Synthesis and nanofluid application of silver nanoparticles decorated graphene," Journal of Materials Chemistry, vol. 21, no. 26, pp. 9702-9709, 2011. https://doi.org/10.1039/C0JM04106H
19.    S. J. Aravind and S. Ramaprabhu, "Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation," Rsc Advances, vol. 3, no. 13, pp. 4199-4206, 2013. https://doi.org/10.1039/C3RA22653K
20.    Z. Han, B. Yang, S. H. Kim, and M. R. Zachariah, "Application of hybrid sphere/carbon nanotube particles in nanofluids," Nanotechnology, vol. 18, no. 10, p. 105701, 2007. https://doi.org/10.1088/0957-4484/18/10/105701
21.    M. Baghbanzadeh, A. Rashidi, D. Rashtchian, R. Lotfi, and A. Amrollahi, "Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids," Thermochimica acta, vol. 549, pp. 87-94, 2012. https://doi.org/10.1016/j.tca.2012.09.006
22.    G. Paul, J. Philip, B. Raj, P. K. Das, and I. Manna, "Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process," International Journal of Heat and Mass Transfer, vol. 54, no. 15-16, pp. 3783-3788, 2011. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.044
23.    S. M. Abbasi, A. Rashidi, A. Nemati, and K. Arzani, "The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina," Ceramics International, vol. 39, no. 4, pp. 3885-3891, 2013. https://doi.org/10.1016/j.ceramint.2012.10.232
24.    M. Nine, B. Munkhbayar, M. Rahman, H. Chung, and H. Jeong, "Highly productive synthesis process of well dispersed Cu₂O and Cu/Cu₂O nanoparticles and its thermal characterization," 2013. https://doi.org/10.1016/j.matchemphys.2013.05.032
25.    C. Lin et al., "Thermal conductivity prediction of WO3-CuO-Ag (35: 40: 25)/water hybrid ternary nanofluid with Artificial Neural Network and back-propagation algorithm," Materials Today Communications, vol. 36, p. 106807, 2023. https://doi.org/10.1016/j.mtcomm.2023.106807
26.    R. Alsangur, S. Doganay, İ. Ates, A. Turgut, L. Cetin, and M. Rebay, "Magnetic field dependent thermal conductivity investigation of water based Fe3O4/CNT and Fe3O4/graphene magnetic hybrid nanofluids using a Helmholtz coil system setup," Diamond and Related Materials, vol. 141, p. 110716, 2024. https://doi.org/10.1016/j.diamond.2023.110716
27.    Y. Qu, D. J. Jasim, S. M. Sajadi, S. Salahshour, A. Rahmanian, and S. Baghaei, "Artificial neural network modeling of thermal characteristics of WO3-CuO (50: 50)/water hybrid nanofluid with a back-propagation algorithm," Materials Today Communications, vol. 38, p. 108169, 2024. https://doi.org/10.1016/j.mtcomm.2024.108169
28.    V. V. Wanatasanappan, P. K. Kanti, P. Sharma, N. Husna, and M. Abdullah, "Viscosity and rheological behavior of Al2O3-Fe2O3/water-EG based hybrid nanofluid: A new correlation based on mixture ratio," Journal of Molecular Liquids, vol. 375, p. 121365, 2023. https://doi.org/10.1016/j.molliq.2023.121365
29.    K. Pavithra et al., "Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium," Sustainability, vol. 15, no. 5, p. 4342, 2023. https://doi.org/10.3390/su15054342
30.    A. U. Yahya, N. Salamat, W.-H. Huang, I. Siddique, S. Abdal, and S. Hussain, "Thermal charactristics for the flow of Williamson hybrid nanofluid (MoS2+ ZnO) based with engine oil over a streched sheet," Case Studies in Thermal Engineering, vol. 26, p. 101196, 2021. https://doi.org/10.1016/j.csite.2021.101196
31.    M. Sepehrnia, K. Mohammadzadeh, M. H. Rozbahani, M. J. Ghiasi, and M. Amani, "Experimental study, prediction modeling, sensitivity analysis, and optimization of rheological behavior and dynamic viscosity of 5W30 engine oil based SiO2/MWCNT hybrid nanofluid," Ain Shams Engineering Journal, p. 102257, 2023. https://doi.org/10.1016/j.asej.2023.102257
32.    S. S. Murshed and C. N. de Castro, "Contribution of Brownian motion in thermal conductivity of nanofluids," in Proceedings of the world congress on engineering, 2011, vol. 3, pp. 6-8. 
33.    V. Y. Rudyak, M. I. Pryazhnikov, A. V. Minakov, and A. A. Shupik, "Comparison of thermal conductivity of nanofluids with single-walled and multi-walled carbon nanotubes," Diamond and Related Materials, vol. 139, p. 110376, 2023. https://doi.org/10.1016/j.diamond.2023.110376
34.    V. K. Poloju, V. Khadanga, S. Mukherjee, P. C. Mishra, N. F. Aljuwayhel, and N. Ali, "Thermal conductivity and dispersion properties of SDBS decorated ternary nanofluid: Impacts of surfactant inclusion, sonication time and ageing," Journal of Molecular Liquids, vol. 368, p. 120832, 2022. https://doi.org/10.1016/j.molliq.2022.120832
35.    X. Han, H. Liang, and Q. Wang, "Unraveling the effect of surfactant on the preparation of 40 nm Cu2O nanofluids for enhanced thermal conductivity," Inorganic Chemistry Communications, vol. 153, p. 110725, 2023. https://doi.org/10.1016/j.inoche.2023.110725
36.    S. H. Rostamian, M. Biglari, S. Saedodin, and M. H. Esfe, "An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation," Journal of Molecular Liquids, vol. 231, pp. 364-369, 2017. https://doi.org/10.1016/j.molliq.2017.02.015
37.    M. Atashafroz, K. Barchipour, and N. Aminizadeh, "Three-dimensional analysis of forced displacement flow in a stepped channel with consideration of the mutual effects of magnetic field and solid nanoparticles,"https://civilica.com/doc/1187024 2019. (In Persian)
38.    M. H. Esfe, S. N. H. Tamrabad, H. Hatami, S. Alidoust, and D. Toghraie, "Using the RSM to evaluate the rheological behavior of SiO2 (60%)-MWCNT (40%)/SAE40 oil hybrid nanofluid and investigating the effect of different parameters on the viscosity," Tribology International, vol. 184, p. 108479, 2023. https://doi.org/10.1016/j.triboint.2023.108479
39.    M. H. Esfe, S. M. Motallebi, and D. Toghraie, "Optimal viscosity modelling of 10W40 oil-based MWCNT (40%)-TiO2 (60%) nanofluid using Response Surface Methodology (RSM)," Heliyon, vol. 8, no. 12, 2022. https://doi.org/10.1016/j.heliyon.2022.e11944
40.    M. H. Esfe, S. Alidoust, S. N. H. Tamrabad, D. Toghraie, and H. Hatami, "Thermal conductivity of MWCNT-TiO2/Water-EG hybrid nanofluids: Calculating the price performance factor (PPF) using statistical and experimental methods (RSM)," Case Studies in Thermal Engineering, vol. 48, p. 103094, 2023. https://doi.org/10.1016/j.csite.2023.103094
41.    M. H. Esfe, "Laboratory and comparative study of thermophysical properties of different nanofluids with the aim of choosing the best nanolubricant,", vol. 18, pp. 125-142 2022.[Online]. Available: https://sid.ir/paper/1052188/fa (In Persian)
42.    M. H. Esfe and S. Melabi, "Experimental study of the effect of effective parameters on the coefficient of thermal conductivity of five-component hybrid nanofluid,", pp. 141–154، 2022.https://www.sid.ir/paper/1052835/fa (In persian)
43.    R. Zhang, S. Qing, X. Zhang, Z. Luo, and Y. Liu, "Enhanced thermal conductivity in Ag-H2O nanofluids by nanoparticles of different shapes: Insights from molecular dynamics simulation," Journal of Molecular Liquids, vol. 388, p. 122750, 2023. https://doi.org/10.1016/j.molliq.2023.122750
44.    R. Zhang, X. Zhang, S. Qing, Z. Luo, and Y. Liu, "Investigation of nanoparticles shape that influence the thermal conductivity and viscosity in argon-based nanofluids: A molecular dynamics simulation," International Journal of Heat and Mass Transfer, vol. 207, p. 124031, 2023. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124031
45.    A. Ghafouri and D. Toghraie, "Experimental study on thermal conductivity of SiC-ZnO/ethylene glycol hybrid nanofluid: proposing an optimized multivariate correlation," Journal of the Taiwan Institute of Chemical Engineers, vol. 148, p. 104824, 2023. https://doi.org/10.1016/j.jtice.2023.104824
46.    A. H. Milyani et al., "Artificial intelligence optimization and experimental procedure for the effect of silicon dioxide particle size in silicon dioxide/deionized water nanofluid: Preparation, stability measurement and estimate the thermal conductivity of produced mixture," Journal of Materials Research and Technology, vol. 26, pp. 2575-2586, 2023. https://doi.org/10.1016/j.jmrt.2023.08.074
47.    W. Duangthongsuk and S. Wongwises, "An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime," International journal of heat and mass transfer, vol. 53, no. 1-3, pp. 334-344, 2010. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.024
48.    K. Suganthi, V. L. Vinodhan, and K. Rajan, "Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants," Applied energy, vol. 135, pp. 548-559, 2014. https://doi.org/10.1016/j.apenergy.2014.09.023
49.    J. R. Satti, D. K. Das, and D. Ray, "Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations," International Journal of Heat and Mass Transfer, vol. 107, pp. 871-881, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.121
50.    J. Gupta, B. K. Pandey, D. Dwivedi, S. Mishra, R. L. Jaiswal, and S. Pandey, "Experimental studies on thermal conductivity of metal oxides/water-ethylene glycol (50%-50%) nanofluids with varying temperature and concentration using ultrasonic interferometer," Physica B: Condensed Matter, vol. 670, p. 415376, 2023. https://doi.org/10.1016/j.physb.2023.415376
51.    S. Murshed, K. Leong, and C. Yang, "A combined model for the effective thermal conductivity of nanofluids," Applied Thermal Engineering, vol. 29, no. 11-12, pp. 2477-2483, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.018
52.    S. P. Jang and S. U. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Applied physics letters, vol. 84, no. 21, pp. 4316-4318, 2004. https://doi.org/10.1063/1.1756684
53.    R. Prasher, P. Bhattacharya, and P. E. Phelan, "Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids," 2006. https://doi.org/10.1115/1.2188509
54.    A. Shatri, M. Zarei Kurdshuli, and Zarei, "calculation of the viscosity of nanofluid SPC hypothetical model of water in molecular dynamics,", pp. 67–78، 2016. https://www.sid.ir/paper/245551/fa (In Persian)
55.    J. C. Maxwell, A treatise on electricity and magnetism. Oxford: Clarendon Press, 1873.
56.    M. H. Esfe, A. Alirezaie, and D. Toghraie, "Thermal conductivity of ethylene glycol based nanofluids containing hybrid nanoparticles of SWCNT and Fe3O4 and its price-performance analysis for energy management," Journal of Materials Research and Technology, vol. 14, pp. 1754-1760, 2021. https://doi.org/10.1016/j.jmrt.2021.07.033
57.    P. Selvan, D. Jebakani, K. Jeyasubramanian, and D. J. J. Jebaraj, "Enhancement of thermal conductivity of water based individual and hybrid SiO2/Ag nanofluids with the usage of calcium carbonate nano particles as stabilizing agent," Journal of Molecular Liquids, vol. 345, p. 117846, 2022. https://www.sciencedirect.com/science/article/pii/S016773222102571X
58.    M. H. R. Dehkordi et al., "Experimental study of thermal conductivity coefficient of GNSs-WO3/LP107160 hybrid nanofluid and development of a practical ANN modeling for estimating thermal conductivity," Heliyon, vol. 9, no. 6, 2023. https://doi.org/10.1016/j.heliyon.2023.e17539
59.    M. H. Esfe, S. Alidoust, and D. Toghraie, "Comparison of thermal conductivity of water-based nanofluids with various combinations of MWCNT, CuO, and SiO2 nanoparticles for using in heating systems," Case Studies in Thermal Engineering, vol. 42, p. 102683, 2023. https://doi.org/10.1016/j.csite.2022.102683
60.    I. A. Khan, "Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles," International Communications in Heat and Mass Transfer, vol. 120, p. 104910, 2021. https://doi.org/10.1016/j.icheatmasstransfer.2020.104910
61.    M. H. Esfe et al., "Theoretical-experimental study of factors affecting the thermal conductivity of SWCNT-CuO (25: 75)/water nanofluid and challenging comparison with CuO nanofluids/water," Arabian Journal of Chemistry, vol. 16, no. 5, p. 104689, 2023. https://doi.org/10.1016/j.arabjc.2023.104689
62.    L. S. Sundar, S. Sangaraju, and K. V. C. Mouli, "Effect of magnetic field on the thermal conductivity and viscosity of magnetic manganese oxide/ethylene glycol nanofluids: An experimental and ANFIS approach," Journal of Magnetism and Magnetic Materials, vol. 588, p. 171386, 2023. https://doi.org/10.1016/j.jmmm.2023.171386
63.    K. Pavithra, V. Parol, A. Brusly Solomon, and M. Yashoda, "Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid," Scientific Reports, vol. 13, no. 1, p. 14219, 2023. https://doi.org/10.1038/s41598-023-39598-1
64.    F. Sahin, O. Genc, M. Gökcek, and A. B. Çolak, "An experimental and new study on thermal conductivity and zeta potential of Fe3O4/water nanofluid: Machine learning modeling and proposing a new correlation," Powder Technology, vol. 420, p. 118388, 2023. https://doi.org/10.1016/j.powtec.2023.118388
 
Volume 13, Issue 1 - Serial Number 33
Spring and summer 2024
September 2024
  • Receive Date: 12 April 2024
  • Revise Date: 11 June 2024
  • Accept Date: 02 July 2024
  • Publish Date: 22 July 2024