[2] Zhu S, Yu G, Tang W, Hu J, and Luo E. Thermoacoustically driven liquid-metal-based triboelectric nanogenerator: a thermal power generator without solid moving parts. Appl. Phys. Lett. 2021; 118(11): 1-6. DOI 10.1063/5.0041415
[3] Swift G.W. Thermoacoustic engines. J. Acoust. Soc. American 1998; 84(2): 1145–1180. DOI 10.1121/1.396617
[5] Mohammadi A, and Alavi A. Investigation of Effective Parameters on a Thermal Load in a Thermo-Acoustic Refrigerator. AUT J. Mech. Eng 2017; 1(1): 49-54. DOI 10.22060/mej.2016.782
[6] Mozurkewich G. Time average temperature distribution in a thermoacoustic stack. J. Acoust. Soc. Amer 1998; 103(8): 380–388. DOI 10.1121/1.423109
[7] Tijani M, Zeegers H. Design of thermoacoustic refrigerators. Cryogenics 2002; 42: 49–57. DOI 10.1016/S0011-2275 (01) 00179-5
[8] Shu-Han H. Evaluating the onset conditions of a thermoacoustic Stirling engine
loaded with an audio loudspeaker. Front. Therm. Eng 2023; 3(3): 52-59. DOI 10.3389/fther.2023.1241411
[9] Namdar A, Kianifar A, Roohi E. Numerical investigation of thermoacoustic refrigerator at weak and large amplitudes considering cooling effect. Cryogenics 2015; 67(2): 36–44. DOI 10.1016/j.cryogenics.2015.01.005
[10] Atchley J, Hofler A. Acoustically generated temperature gradients in short plates. J. Acoust. Soc. Amer 1990; 88(1): 251-363. DOI 10.1121/1.399947
[11] Worlikar S, Knio M. Numerical simulation of a thermoacoustic refrigerator: II. Stratified flow around the stack. J. Comput. Phys 1998; 144(2): , No. 299-324. DOI 10.1006/jcph.1997.5816
[12] Kim T, Suh S. Linear resonant duct thermoacoustic refrigerator having regenerator stacks. Proceedings of the 16th International Congress on Acoustics, Ochmann; 1998.
[13] Duffourd S. Refrigerateur thermoacoustique: etudes analytiques et experimentales en vue dune miniaturisation. PhD thesis, Ecole Centrale de Lyon; 2001.
[14] Piccolo A. Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow. Int. J. Heat Mass Trans 2011; 54(3):13-18. DOI 10.1016/j.ijheatmasstransfer.2011.06
[15] Marx D, Blanc-Bennon P.h. Numerical calculation of the temperature difference between the extremities of a thermoacoustic stack plate. Cryogenics 2005;45(4):163–172. DOI 10.1016/j.cryogenics.2004.08.007
[17] Roy D, Ghosh s. An experimental study on the effect of various stack materials on thermo acoustic refrigeration effect. J. Phys 2021; 20(4): 1-10. DOI 10.1088/1742-6596/2070/1/012220
[18] Kajurek J. The influence of stack position and acoustic frequency on the performance of thermoacoustic refrigerator with the standing wave. Arch. Therm 2017; 38(4): 88-107. DOI 10.1515/aoter-2017-0026
[19] Wantha CH. The impact of stack geometry and mean pressure on cold end temperature of stack in thermoacoustic refrigeration systems. Int. J. Heat Mass Trans 2018; 54(2): 2153–2161. DOI 10.1007/s00231-018-2280-z
[20] Amirin T, Yulianto M. Experimental study of thermoacoustic cooling with parallel plate stack in different distances. International Conference on Design, Energy, Materials and Manufacture, Indonesia; 2019. DOI 10.1088/1757-899X/539/1/012037
[21] Vesely M. Difference between working gases in thermoacoustic engine. Epj. Web. Conf. 2014, 67(5):1-4. DOI 10.1051/epjconf/20146702126
[23] Blance N, Yange R. Thermo acoustic engines with near-critical working fluids”, Appl. Therm. Eng 2023; 231(7): 1-13. DOI 10.1016/j.applthermaleng.2023.1208