Design of Optimal Arrangement for Improving Accuracy of Tilt Measurement Unit for Wind Tunnel Balance

Document Type : Original Article

Authors

1 Associate Professor, Shiraz University, Shiraz, Iran

2 Assistant Professor, Shiraz University, Shiraz, Iran

Abstract

The wind tunnel is one of the most widely used equipment in the design of flight vehicles to investigate the control surface effectiveness and also, aerodynamic pre-flight behavior of these vehicles. On the other hand, one of the most essential parts of the wind tunnel is the balance tilt measurement unit, which measures the attitude of the balance and installed model with high accuracy. There are several ways to design the tilt measurement unit of wind tunnel balance. One of them is to use proper and efficient accelerometers by considering selection, and optimal installation of them in the tilt measurement unit of wind tunnel balance. These Considerations are necessary to reduce the measuring error and make the test results reliable. In this paper, firstly, the effective parameters and calibration methods will be presented. Then, several arrangement methods for installation of these accelerometers will be presented and finally, the optimal design method will be proposed.

Keywords


Smiley face

[2]         Selig  M. S. and McGranahan B. D. Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines J. Sol. Energy Eng. Trans. ASME. 2004;126)4(:986–1001. doi: 10.1115/1.1793208.
[3]         Zhang R. W. Du Q. Li and X. Cui Aerodynamic design of 2.4 m continuous transonic wind tunnel Kongqi Donglixue Xuebao/Acta Aerodyn. Sin. 2023;41)1(.doi: 10.7638/kqdlxxb-2022.0185.
[4]         Kaliyari D. Nusrath TK K. and Singh J. Validation and Update of Aerodynamic Database at Extreme Flight Regimes. 2015; 157–172. doi: 10.4271/2015-01-2567.
[5]         Wong K. H. Lai W. Ng J. H. Fazlizan A. Sopian K. and Sahoo N. Open-Loop Subsonic Suction Type Wind Tunnel: Design Simulation Build and Test J. Adv. Res. Fluid Mech. Therm. Sci. 202;105)2 .(doi: 10.37934/arfmts.105.2.204223.
[6]         Besharati M. Jozvaziri M. and Rabiee A. Design High Temperature Cored Brick Heater for Hypersonic Wind Tunnel Fluid Mech. Aerodyn. J. 2020; 9(1):45–66.
[7]         Reis M. L. Mello O. and Uyeno S. Calibration Uncertainty of an External Six-Component Wind Tunnel Balance in 33rd AIAA Fluid Dynamics Conference and Exhibit, Jun. 2003; June.1–10. doi: 10.2514/6.2003-3884.
[8]         He, R., Sun, H., Gao, X., and Yang, H., Wind tunnel tests for wind turbines: A state-of-the-art review, Renewable and Sustainable Energy Reviews. 2022;166. doi: 10.1016/j.rser.2022.112675.
[9]         Smith A. L. Mee D. J. Daniel W. J. T. and Shimoda T. Design Modelling and Analysis of a Six Component Force Balance for Hypervelocity Wind Tunnel Testing Comput. Struct. 2001;79(11):1077–1088 doi: 10.1016/S0045-7949(01)00005-0.
[10]       Abdelwahab M. Ghazal T. and Aboshosha H. Designing a multi-purpose wind tunnel suitable for limited spaces Results Eng. 2022;14. doi: 10.1016/j.rineng..100458.
[11]       Abdel Aziz S. S. Moustafa E. B. and Salem Said A. H. S. Experimental Investigation of the Flow Noise and Vibration Effect on the Construction and Design of Low-Speed Wind Tunnel Structure Machines. 2023;11(3). doi: 10.3390/machines11030360.
[12]       Wong D. T. Evaluation of Electrolytic Tilt Sensors for Wind Tunnel Model Angle-of-Attack (AOA) Measurements in ICIASF ’91 Record. International Congress on Instrumentation in Aerospace Simulation Facilities. 1991;382–391 doi: 10.1109/ICIASF.1991.186261.
[13]       Rueger M. and Lafferty J. Demonstration of a Gyro-Based Model Attitude Measurement System at the AEDC Tunnel 9 Test Facility in 38th Fluid Dynamics Conference and Exhibit Jun. 2008;June:1–12 doi: 10.2514/6.2008-4042.
[14]       Lee G. Study of Optical Techniques for The Ames Unitary Wind Tunnel Part 7. 1993;1–26.
[15]       McDevitt F. K. O. Kevin T. An optical angle of attack sensor. Int. Congr. Instrum. Aerosp. Simul. Facil. 1989;113–124.
[16]       Finley T. and Tcheng P. Model Attitude Measurements at NASA Langley Research Center in 30th Aerospace Sciences Meeting and Exhibit. 1992;Jan:1–8 doi: 10.2514/6.1992-763.
[17]       Owen F. McDevitt T. Morgan D. and Owen A. Wind Tunnel Model Angle of Attack Measurements Using an Optical Model Attitude System in 38th Aerospace Sciences Meeting and Exhibit. 2000;Jan:1–5 doi: 10.2514/6.2000-414.
[18]       Yang H. Zhou B. We  Q. Wang X. Xu X. and Zhang R. Accurate Attitude Estimation of HB2 Standard Model Based on QNCF in Hypersonic Wind Tunnel Test Chinese J. Aeronaut. 2020;33(1):64–72. doi: 10.1016/j.cja.2019.07.021.
[19]       Mosavi A. and Varkonyi-Koc A. R. y Recent Global Research and Education: Technological Challenges. December. Cham: Springer International Publishing. 2017;519.
[20]       Macdonald E. 3D Printing for the Rapid Prototyping of Structural Electronics IEEE Access. 2014;2:234–242. doi: 10.1109/ACCESS.2014.2311810.
[21]       Fatikow S. and Rembold U. Microsystem Technology and Microrobotics. Berlin Heidelberg: Springer Berlin Heidelberg 1997.
[22]       Nelson T. C. Research Tools to Investigate Movements Migrations and Life History of Sturgeons (Acipenseridae) with an Emphasis on Marine-Oriented Populations PLoS One 2013;8(8):1–22.doi: 10.1371/journal.pone.0071552.
[23]       Yuan  X. Yu S. Zhang S. Wang G. and Liu S. Quaternion-Based Unscented Kalman Filter for Accurate Indoor Heading Estimation Using Wearable Multi-Sensor System Sensors. 2015;15(5):10872–10890. doi: 10.3390/s150510872.
[24]       Loh B. G. and Rosen J. Kinematic Analysis of 7 Degrees of Freedom Upper-Limb Exoskeleton Robot with Tilted Shoulder Abduction Int. J. Precis. Eng. Manuf. 2013;14(1):69–76. doi: 10.1007/s12541-013-0011-4.
[25]       Navidi N. Landry R. J. Chen J. and Gingras D. A New Technique for Integrating MEMS-Based Low-Cost IMU and GPS in Vehicular Navigation J. Sensors. 2016;1–16. doi: 10.1155/2016/5365983.
[26]       Ali A. and El-Sheimy N. Low-Cost MEMS-Based Pedestrian Navigation Technique for GPS-Denied Areas J. Sensors. 2013;1–11. doi: 10.1155/2013/197090.
[27]       Sahoo N. Mahapatra D. R. Jagadees  G. Gopalakrishnan S. and Reddy K. P. J. An Accelerometer Balance System for Measurement of Aerodynamic Force Coefficients Over Blunt Bodies in a Hypersonic Shock Tunnel Meas. Sci. Technol. 2003;14(3):260–272. doi: 10.1088/0957-0233/14/3/303.
[28]       Albarbar, A., Badri, A., Sinha, J. K., and Starr, A., Performance Evaluation of MEMS Accelerometers, Measurement. 2009;42(5):790–795. doi: 10.1016/j.measurement.2008.12.002.
[29]       matthew C. E. Calibration of Accelerometer Output for Adults Med. Sci. Sport. Exerc. 2005;37:512–S522.doi: 10.1249/01.mss.0000185659.11982.3d.
[30]       Luczak S. Grepl R. and Bodnicki M. Selection of MEMS Accelerometers for Tilt Measurements J. Sensors. 2017;1–14. doi: 10.1155/2017/9796146.
[31]       Ripper G. P. Dias R. S. and Garcia G. A. Primary Accelerometer Calibration Problems Due to Vibration Exciters Meas. J. Int. Meas. Confed. 2009;42(9):1363–1369. doi: 10.1016/j.measurement.2009.05.002.
[32]       Beravs T. Podobnik J. and Munih M. Three-Axial Accelerometer Calibration Using Kalman Filter Covariance Matrix for Online Estimation of Optimal Sensor Orientation IEEE Trans. Instrum. Meas. 2012;61(9): 2501–2511. doi: 10.1109/TIM.2012.2187360.
[33]       Won S. H. P. and Golnaraghi F. A Triaxial Accelerometer Calibration Method Using a Mathematical Model IEEE Trans. Instrum. Meas. 2010;59(8):2144–2153 doi: 10.1109/TIM.2009.2031849.
[34]       Luczak S. and Oleksiuk W. Increasing Accuracy of Tilt Measurements Eng. Mech. 2007;14(1):143–154.
[35]       Ɓuczak S. Guidelines for Tilt Measurements Realized by MEMS Accelerometers Int. J. Precis. Eng. Manuf. 2014;15(3):489–496. doi: 10.1007/s12541-014-0362-5.
[36]       Inc A. D. Low Cost ±2 g Dual Axis Accelerometer With Duty Cycle Output ADXL 202E. 2000;1–4.
[37]       Mon K. and New T. Analysis on Modeling and Simulation of Low Cost MEMS Accelerometer ADXL202. Proc. World Academy of Science Engineering and Technology. 2008;32:568–571.
Volume 13, Issue 1 - Serial Number 33
Spring and summer 2024
September 2024
  • Receive Date: 20 February 2024
  • Revise Date: 12 June 2024
  • Accept Date: 29 June 2024
  • Publish Date: 22 July 2024