Numerical investigation of the effects of material, wall thickness, one and two zones porousity in a thermo-photovoltaic combustion chamber

Document Type : Original Article

Authors

1 Assistant Professor, Al-Zahra University, Tehran, Iran

2 Master's student at Al-Zahra University, Tehran, Iran

3 Master's degree, Al-Zahra University, Tehran, Iran

Abstract

The performance of combustion chambers for use in thermo-photovoltaic systems depends on some factors such as the material of chamber, wall thickness, and the presence of porous medium in the combustion chamber, which has been investigated in this research. In order to simulate a numerical model, the realizable k-ε and the finite rate- eddy dissipation models have been used to model flow turbulence and hydrogen gas combustion, respectively. Three different wall thicknesses at constant equivalence ratio of 0.8 and velocities of 2 m/s and 3 m/s have been studied. The results show that decreasing the wall thickness increases the temperature of the outer wall and the radiation efficiency of the chamber. The maximum temperature increases by 111 and 141 °C at the velocity of 2 m/s and at the thickness of 0.2 mm as compared to the thicknesses of 0.5 mm and 0.8 mm and by 79 and 107 °C at the velocity of 3 m/s. Also, the combustion chamber has been simulated with three different materials of walls, Al2O3, SiC and Stainless Steel(SS316). The results show that when the wall is made of Al2O3, the efficiency is higher. In another part of this research, the presence of two porous zones in the chamber has led to a change in the place of flame formation. The radiation efficiency in the combustion chamber with the presence of two porous regions increases by 24%, 27%, and 28%, respectively, in the equivalence ratios of 0.6, 0.8, and 1.

Keywords


Smiley face

[1] Wang Y, Zeng H, Shi Y, Cao T, Cai N, Ye X, et al. Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner. Energy. 2016;109:117-23.
DOI: 10.1016/j.energy.2016.04.095
[2] Wu M, Hua J, Kumar K. An improved micro-combustor design for micro gas turbine engine and numerical analysis. J. Micromech. Microeng. 2005;15(10):1817.
DOI :10.1088/0960-1317/15/10/005
[3] Chou S, Yang W, Li J, Li Z. Porous media combustion for micro thermophotovoltaic system applications. Appl. Energy. 2010;87(9):2862-7.
DOI :10.1016/j.apenergy.2009.06.039
[4] Su S-S, Hwang S-J, Lai W-H. On a porous medium combustor for hydrogen flame stabilization and operation. Int. J. Hydrogen Energy. 2014;39(36):21307-16.
DOI :10.1016/j.ijhydene.2014.10.059
[5] Pan J, Wu D, Liu Y, Zhang H, Tang A, Xue H. Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Appl. Energy. 2015;160:802-7.
DOI :10.1016/j.egypro.2014.11.1081
[6] Li J, Li Q, Shi J, Liu X, Guo Z. Numerical study on heat recirculation in a porous micro-combustor. Combust. Flame. 2016;171:152-61.
DOI :10.1016/j.combustflame.2016.06.007
[7] Peng Q, Jiaqiang E, Chen J, Zuo W, Zhao X, Zhang Z. Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy Convers. Manage. 2018;155:276-86.
DOI :10.1016/j.enconman.2017.10.095
[8] Peng Q, Yang W, Jiaqiang E, Xu H, Li Z, Yu W, et al. Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications. Energy Convers. Manage. 2019; 200; 112086.
DOI: 10.1016/j.enconman.2019.112086
[9] Yang X, Zhao L, He Z, Dong S, Tan H. Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes. Appl. Therm. Eng. 2019;160:114110.
DOI 10.1016/j.applthermaleng.2019.114110
[10] Qian P, Liu M, Li X, Xie F, Huang Z, Luo C, et al. Combustion characteristics and radiation performance of premixed hydrogen/air combustion in a mesoscale divergent porous media combustor. Int. J. Hydrogen Energy. 2020;45(7):5002-13.
DOI: 10.1016/j.ijhydene.2019.12.094
[11] Li Q, Zuo W, Zhang Y, Li J, He Z. Effects of rectangular rib on exergy efficiency of a hydrogen-fueled micro combustor. Int. J. Hydrogen Energy. 2020;45(16):10155-63.
DOI :10.1016/j.ijhydene.2020.01.221
[12] Ni S, Zhao D, Becker S, Tang A. Thermodynamics and entropy generation studies of a T-shaped micro-combustor: effects of porous medium and ring-shaped ribs. Appl. Therm. Eng. 2020;175:115374.
DOI :10.1016/j.applthermaleng.2020.115374
[13] He Z, Yan Y, Li X, Shen K, Li J, Zhang Z. Comparative investigation of combustion and thermal characteristics of a conventional micro combustor and micro combustor with internal straight/spiral fins for thermophotovoltaic system. Int. J. Hydrogen Energy. 2021;46(42):22165-79.
DOI :10.1016/j.ijhydene.2021.04.030
[14] Zuo W, Zhang Y, Li Q, Li J, He Z. Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications. Energy. 2021;223:120098.
DOI :10.1016/j.energy.2021.120098
[15] Pourali M, Esfahani JA, Fanaee SA, Bastiaans RJ, Kim KC. Effect of hydrogen addition on conjugate heat transfer in a planar micro-combustor with the detailed reaction mechanism: An analytical approach. Int. J. Hydrogen Energy. 2020;45(30):15425-40.
DOI: 10.1016/j.ijhydene.2020.03.236
[16] Peng Q, Yang W, Jiaqiang E, Li Z, Xu H, Fu G, et al. Investigation on H2/air combustion with C3H8 addition in the combustor with part/full porous medium. Energy Convers. Manage. 2021;228:113652.
DOI :10.1016/j.enconman.2020.113652
[17] Li J, Chou S, Li Z, Yang W. Experimental investigation of porous media combustion in a planar micro-combustor. Fuel. 2010;89(3):708-15.
DOI: 10.1016/j.fuel.2009.06.026
[18] Qian P, Liu M, Li X, Xie F, Huang Z, Luo C, et al. Effects of bluff-body on the thermal performance of micro thermophotovoltaic system based on porous media combustion. Appl. Therm. Eng. 2020;174:115281.
DOI :10.1016/j.applthermaleng.2020.115281
[19] Guessab A, Aris A, Bounif A. Simulation of turbulent piloted methane non-premixed flame based on combination of finite-rate/eddy-dissipation model. Mechanics. 2013;19(6):657-64.
DOI :10.5755/j01.mech.19.6.6000
[20] Fanaee SA, Abbaszadeh M. The thermal–fluid investigation of effects of different wall boundary conditions on platinum catalytic micro-channel combined with a thermoelectric system. Alexandria Eng. J. 2021;60(6):5675-85.
DOI :10.1016/j.aej.2021.04.049
[21] Bidabadi M, Abedinejad M, Fereidooni J. Modeling of the propagation of a reaction front in fixed bed combustion of wood particles. J. Mech. 2011;27(3):453-9.
DOI :10.1017/jmech.2011.48
[22] Bazdidi-Tehrani F, Sharifi-Sedeh E, Abedinejad MS. Effects of alumina nanoparticles on evaporation and combustion characteristics of diesel fuel droplets. J. Taiwan Inst. Chem. Eng. 2023;143:104713.
DOI: 10.1016/j.jtice.2023.104713
[23] Bazdidi-Tehrani F, Yazdani Ahmadabadi H, Abedinejad MS. Analysis of Influence of Variable Airflow Distribution on Reactive Flow in a Gas Turbine Model Combustion Chamber. Fuel and Combustion. 2015;8(2):13-32. (In Persian)
[25] Mohammadi M, Abedinejad MS. Analysis of NO Formation and Entropy Generation in a Reactive Flow. Aerospace. 2022;9(11):666.
DOI: 10.3390/aerospace9110666
[26] Bazdidi-Tehrani F, Abedinejad MS, Yazdani-Ahmadabadi H. Influence of Variable Air Distribution on Pollutant Emissions in a Model Wall Jet Can Combustor. Heat Transfer Res. 2018;49(17).
DOI: 10.1615/HeatTransRes.2018025102
[27] Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids. 1995;24(3):227-38.
DOI :10.1016/0045-7930(94)00032-T
[28] Sazhin S, Sazhina E, Faltsi-Saravelou O, Wild P. The P-1 model for thermal radiation transfer: advantages and limitations. Fuel. 1996;75(3):289-94.
DOI :10.1016/0016-2361(95)00269-3
[29] Li J, Chou S, Li Z, Yang W. Characterization of wall temperature and radiation power through cylindrical dump micro-combustors. Combust. Flame. 2009;156(8):1587-93.
DOI :10.1016/j.combustflame.2009.05.003
[30] Weinberg F. Combustion temperatures: the future?. Nature. 1971;233(5317):239-41.
DOI :10.1038/233239a0
[31] Wu Y, Peng Q, Yang M, Shan J, Yang W. Entropy generation analysis of premixed hydrogen–air combustion in a micro combustor with porous medium. Chem. Eng. Process. Process Intensif. 2021; 168:108566.
DOI :10.1016/j.cep.2021.108566
Volume 13, Issue 1 - Serial Number 33
Spring and summer 2024
September 2024
  • Receive Date: 26 March 2024
  • Revise Date: 16 June 2024
  • Accept Date: 06 July 2024
  • Publish Date: 22 July 2024