Laboratory Investigation of the Formation, Shape Change, and Movement of Viscoelastic Droplets of Wormlike Micelles by the Shadowgraphy Method

Document Type : Original Article

Authors

1 PhD student, Yazd University, Yazd, Iran.

2 professor ،Yazd University, Yazd, Iran

3 Associate Professor, Shahrood University of Technology, Shahrood, Iran.

Abstract

In this study, we investigate the experimental influence of wormlike micelles on the formation and deformation of viscoelastic droplets, comparing them with equivalent Newtonian fluids. Employing laboratory methods and advanced equipment, we utilize image processing techniques. Non-Newtonian fluids are formulated using combinations of water, CTAB, and KBr, while equivalent Newtonian fluids comprise water and glycerin in varying concentrations. The experiment employs four needles with four distinct flow rates. Increasing needle diameter and flow rate correspondingly increases parameters such as droplet size and volume. Additionally, the fluid viscosity resembles that of wormlike micelles, displaying unique behavior compared to Newtonian fluids. At a distance of 22 mm from the needle, the average elongation width behind the droplet of the wormlike micelle in different states measures approximately 1.3 mm. Notably, in viscoelastic fluids, trailing droplets form upon complete release, whereas in equivalent Newtonian fluids, no such fluid flow or trailing droplets occur upon release.

Keywords


Smiley face

 

[1] White, F. M. (2010). “Fluid mechanics”, McGraw-Hill.‏
[2] Smolka, L. B. and A. Belmonte (2003), “Drop pinch-off and filament dynamics of wormlike micellar fluids”, Journal of Non-Newtonian Fluid Mechanics, 115, pp. 1-25. doi.org/10.1016/S0377-0257(03)00116-2.
 [3] Hauser, E.A., Edgerton, H.E., Holt, B.M. and Cox Jr, J.T., “The Application of the High-speed Motion Picture Camera to Research on the Surface Tension of Liquids”. The Journal of Physical Chemistry, 1936. 40(8): p. 973-988. doi.org/10.1021/j150377a003
 [4] Hayworth, C.B., and R.E. Treybal, “Drop formation in two-liquid-phase systems”. Industrial & Engineering Chemistry, 1950. 42(6): p. 1174-1181. doi.org/10.1021/ie50486a030
[5] Scheele, G.F. and B.J. Meister, “Drop formation at low velocities in liquid‐liquid systems: Part I. Prediction of drop volume”. AIChE Journal, 1968. 14(1): p. 9-15. doi.org/10.1002/aic.690140105
[6] Heertjes, P., L. De Nie, and H. “De Vries, Drop formation in liquid-liquid systems--I prediction of drop volumes at a moderate speed of formation”. Chemical Engineering Science, 1971. 26(3): p. 441-449. doi.org/10.1016/0009-2509(71)83017-8.
[7] Shi, X., M.P. Brenner, and S.R. Nagel, “A cascade of structure in a drop falling from a faucet”. Science, 1994. 265(5169): p. 219-222. DOI: 10.1126/science.265.5169.219.
[8] Zhang, X. and O.A. Basaran, “An experimental study of dynamics of drop formation”. Physics of Fluids, 1995. 7(6): p. 1184-1203.
 [9] Rao, A., Reddy, R.K., Ehrenhauser, F., Nandakumar, K., Thibodeaux, L.J., Rao, D. Valsaraj, K.T., “Effect of surfactant on the dynamics of a crude oil droplet in the water column: Experimental and numerical investigation”. The Canadian Journal of Chemical Engineering, 2014. 92(12): p. 2098-2114. doi.org/10.1002/cjce.22074.
[10] Ponce-Torres, A., Montenegro, J., Herrada, M., Vega, E., and Vega, J., “Influence of the surface viscosity on the breakup of a surfactant-laden drop”. Physical Review Letters, 2017. 118(2): p. 1-5. DOI:10.1103/PhysRevLett.118.02450
 [11] Eggers, J. (1997), “Nonlinear dynamics and breakup of free-surface flows”, Reviews of Modern Physics, 69, pp. 865. doi.org/10.1103/RevModPhys.69.865
[12] Cooper-White, J., et al. (2002), “Drop formation dynamics of constant low-viscosity, elastic fluids”, Journal of Non-Newtonian Fluid Mechanics, 106, pp. 29-59. doi.org/10.1016/S0377-0257(02)00084-8.
[13] Mun, R. P., et al. (1998), “The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets”, Journal of Non-Newtonian Fluid Mechanics, 74, pp. 285-297. doi.org/10.1016/S0377-0257(97)00074-8
 [14] Bhat, P. P., et al. (2008), “Dynamics of viscoelastic liquid filaments: Low capillary number flows”, Journal of Non-Newtonian Fluid Mechanics, 150, pp. 211-225. doi.org/10.1016/j.jnnfm.2007.10.021
 [15] Norouzi, M., Sheykhian, M.K., Shahmardan, M.M. A.Shahbani-Zahiri. “Experimental investigation of spreading and receding behaviors of Newtonian and viscoelastic droplet impacts on inclined dry surfaces”. Meccanica 56, 125–145 (2021). doi.org/10.1007/s11012-020-01285-0. 
[16] Bertola, V. and M. Wang, “Dynamic contact angle of dilute polymer solution drops impacting on a hydrophobic surface”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 481: p. 600-608. doi.org/10.1016/j.colsurfa.2015.05.052.
[17] Choi, W., et al. “Drop impact on inclined superhydrophobic surfaces”. APS March Meeting Abstracts. 2016.
[18] P. Akbarzadeh., M. Norouzi, R. Ghasemi, S. Z. Daghighi .“Experimental study on the entry of solid spheres into Newtonian and non-Newtonian fluids”. Physics of Fluids, 2022. 34(3): p. 033111.
[19] Chaurasia, A.S., D.N. Josephides, and S. Sajjadi, “Buoyancy-driven drop generation via microchannel revisited”. Microfluidics and Nano Fluidics, 2015. 18(5-6): p. 943-953. doi.org/10.1007/s10404-014-1484-x.
[20] Zavala, J., K. Szczepanowicz, and P. Warszynski, “Theoretical and experimental studies of drop size in membrane emulsification–single pore studies of the hydrodynamic detachment of droplets”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 470: p. 297-305. doi.org/10.1016/j.colsurfa.2015.01.030.
[21] Birjandi, A.K. & Norouzi, Mahmood & Kayhani, Mohammad Hassan. (2017). “A      numerical study on drop formation of viscoelastic liquids using a nonlinear constitutive equation”. Meccanica. 52. 1-21. 10.1007/s11012-017-0669-2. doi.org/10.1016/j.colsurfa.2015.01.030
 
Volume 13, Issue 2 - Serial Number 33
Autumn and winter 2024
November 2024
Pages 1-27
  • Receive Date: 19 July 2024
  • Revise Date: 15 October 2024
  • Accept Date: 12 November 2024
  • Publish Date: 01 December 2024