تحلیل پایداری یک کنترلر چند حلقه حاوی رگولاتورهای فیدبک خروجی و اشباع برای موتور هواپیماهای تجاری

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مکانیک، دانشکده مهندسی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

یک روش کارآمد جهت کنترل موتور هواپیماهای تجاری ساختار چندحلقه Min-Max است. در این مقاله، یک کنترلر Min-Max با ساختار سوئیچینگ و حاوی رگولاتورهای فیدبک خروجی و تابع اشباع روی نرخ جریان سوخت برای یک موتور توربوفن طراحی می­شود. علاوه بر عملکرد مطلوب، تحلیل پایداری یک مسئله مهم در فرآیند طراحی کنترلر برای موتورهای هوایی است. به دلیل رفتار سوئیچینگ روش Min-Max، پایداری تک‌تک حلقه‌ها پایداری کل سیستم را تضمین نمی­کند؛ بنابراین یک روش جهت تحلیل پایداری سیستم حلقه بسته ارائه می‌شود. برای این منظور، عملگرهای Min، Max و تابع اشباع با معادل‌های غیرخطی آن‌ها جایگزین شده و ساختار سیستم کنترلی به شکل متعارف سیستم لور تبدیل می­شود. سپس شرایط برای پایداری مجانبی استخراج شده و با استفاده از روش ارائه شده، اثبات پایداری مجانبی برای سیستم حلقه بسته انجام می­گیرد. در یک شبیه‌سازی با مدل غیرخطی از یک موتور توربوفن، عملکرد کنترلر Min-Max طراحی شده در برآوردن تراست و مدیریت قیود با روش Min-Max/SMC مقایسه می‌شود.

کلیدواژه‌ها


Smiley face

  1. . Csang, J.T., May, R.D., Guo, T.H., and Litt, J. “The Effect of Modified Control Limits on the Performance of a Generic

    Commercial Aircraft Engine”, NASA/TM—2012-217261, Glenn Research Center, Cleveland, Ohio, 2012.

    1. May, R.D., and Garg, S. “Reducing Conservatism in Aircraft Engine Response Using Conditionally Active Min-Max Limit

    Regulators”, NASA/TM—2012-217814, Glenn Research Center, Cleveland, Ohio, 2012.

    1. Garg, S. “Aircraft Turbine Engine Control Research at NASA Glenn Research Center”, NASA/TM-2013-217821, Glenn

    Research Center, Cleveland, Ohio, 2013.

    1. Imani, A., and Montazeri-Gh, M. “Improvement of Min–Max Limit Protection in Aircraft Engine Control: An LMI

    Approach”, J. Aerosp. Sci. Technol. Vol. 68, pp. 214-222, 2017.

    1. Neto, A. H., and Yoneyama, T. “A Novel Approach for Stall Prevention and Rotation Speed Limiting in a Min–Max

    Controller Structure”, J. Control, Automat. Electr. Systs. Vol. 30, pp. 27-40, 2019.

    1. Liu, X., Luo, C., and Xiong, L. “Compensators Design for Bumpless Switching in Aero-Engine Multi-Loop Control

    System”, Asian J. Control, Published Online, 2021.

    1. Mohammadi, S.J., Miran-F, S.A., Jafari, S., and Nikolaidis, T. “A Scientometric Analysis and Critical Review of Gas

    Turbine Aero-Engines Control: from Whittle Engine to More-Electric Propulsion”, J. Meas. Control, Vol. 54, No. 5, pp.

    935-966, 2021.

    1. Mohammadi, E., and Montazeri-Gh, M. “Active Fault Tolerant Control with Self-Enrichment Capability for Gas Turbine

    Engines”, J. Aerosp. Sci. Technol. Vol. 56, pp. 70-89, 2016.

    1. Seborg, D.S., Edgar, T.F., Mellichamp, D.A., and Edgar, T.F. “Process Dynamics and Control”, 3rd ed., John Wiley &

    Sons, Inc, New Jersey, US, 2011.

    1. Lopez, A.A., and Martin, J.A. “Using Multivariable Nonlinear Stability Theory for Override Control Systems”; In: Eur.

    Control Conf., Karlsruhe, Germany, 31 August–3 September 1999.

    1. Glattfelder, A.H., and Schaufelberger, W. “Control Systems with Input and Output Constraints”, Springer, London, UK,

    2003.

    1. Johansson, M. “Piecewise Linear Control Systems. In Lecture Notes in Control and Information Sciences”, Vol. 284.,

    Springer-Verlag, Berlin Heidelberg, Germany, 2003.

    1. Richter, H. “A Multi-Regulator Sliding Mode Control Strategyfor Output-Constrained Systems”, Automatica, Vol. 47, No.

    10, pp. 2251-2259, 2011.

    1. Richter, H. “Multiple Sliding Modes with Override Logic: Limit Management in Aircraft Engine Controls”, AIAA J. Guid.

    Control Dyn. Vol. 35, No. 4, pp. 1132-1142, 2012.

    1. Imani, A., and Montazer-Gh, M. “Stability Analysis of Override Logic System Containing State Feedback Regulators and

    its Application to Gas Turbine Engines”, Eur. J. Control, Vol. 52, pp. 97-107, 2020.

    1. Imani, A., and Montazer-Gh, M. “A Multi-loop Switching Controller for Aircraft Gas Turbine Engine with Stability

    Proof”, Int. J. Control Autom. Syst., Vol. 17, No. 6, pp. 1359-1368, 2019.

    1. DeCastro, J.A., Litt, J.S., and Frederick, D.K. “A Modular Aero-Propulsion System Simulation of a Large Commercial

    Aircraft Engine”, NASA/TM—2008-215303, Glenn Research Center, Cleveland, Ohio, 2008.

    1. Litt, J., Frederick, D., and Guo, T.H. “The Case for Intelligent Propulsion Control for Fast Engine Response”,

    NASA/TM—2009-215668, Glenn Research Center, Cleveland, Ohio, 2009.

    1. Imani, A., and Montazeri-Gh, M. “A Min-Max Selector Controller for Turbofan Engines with Improvement of Limit

    Management and Low Computational Burden”, T. I. Meas. Control, Vol. 41, No. 1, pp. 36-44, 2018.

    1. Montazeri-Gh, M., Hosseini, S.M., and Imani, A. “Min-Max Controller Design for Double Shaft Unmixed Turbofan

    Engine’s Thermodynamic Model”, Aerosp. Mech. J., Vol. 15, No. 2, pp. 17-32, 2019. (In Persian)

    1. Walsh, P.P., and Fletcher, P. “Gas Turbine Performance”, 2nd ed., Blackwell Science, UK, 2004.
    2. Montazeri-Gh, M., Ehteshami, M., and Imani, A. “Multivariable Model Predictive Control Design for a Turbofan Engine

    and Performance Comparison with a Min-Max Controller”, J. Fluid Mech. and AeroDyn., Vol. 8, No. 1, pp. 161-176, 2019.

    (In Persian)

    1. Zinnecker, A.M., Chapman, J.W., Lavelle, T.M., and Litt, J. S. “Development of a Twin-Spool Turbofan Engine

    Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)”, NASA/TM—2014-

    218402, Glenn Research Center, Cleveland, Ohio, 2014.

    1. Chapman, J.W., and Litt, J.S. “Control Design for an Advanced Geared Turbofan Engine”, NASA/TM—2017-219569,

    Glenn Research Center, Cleveland, Ohio, 2017.

    1. Richter, H. “Advanced Control of Turbofan Engines”, Springer, New York, US, 2012.
    2. Khalil, H.K. “Nonlinear Control”, Pearson Education, London, UK, 2015.
    3. Haddad, W.M., and Bernstien, D.S. “Explicit Construction of Quadratic Lyapunov Functions for the Small Gain, Positivity,

    Circle, and Popov Theorems and Their Application to Robust Stability. Part I: Continuous-Time Theory”, Int. J. Robust

    Nonlin. Vol. 3, No. 4, pp. 313-339, 1993.

    1. Scherer, C.W., and Weiland, S. “Linear Matrix Inequalities in Control”, Delft University of Technology, Netherlands,

    2004.