مطالعه عددی تأثیرات سیستم افشانه و پدهای مرطوب در توزیع دمای گلخانه ای با سیستم تهویه فن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه قـم، قم، ایران

2 دانشیار، آزمایشگاه پژوهشی اتمسفر زمین و علوم فضایی، گروه مهندسی مکانیک، دانشگاه قـم، قم، ایران

چکیده

در این پژوهش رفتار جریان هوا، تغییرات دما و رطوبت در یک سالن گلخانه به کمک شبیه سازی عددی مطالعه شده‌است. به منظور رطوبت دهی به هوای در حال جریان داخل سالن گلخانه، دو میزان متفاوت از آب با سه روش متفاوت به هوای عبوری به سالن گلخانه پاشش می‌شود در روش اول دو پد رطوبتی با مجموع سطح مقطع 15 متر مربع و در روش دوم دو افشانه در فاصله 5 و 30 متری از دیوار ابتدایی سالن و در ارتفاع 3 متری از کف گلخانه عملیات پاشش آب را انجام می‌دهند. در روش سوم، بیست‌وهفت افشانه عملیات پاشش قطرات آب را در مختصات مختلف به هوای عبوری گلخانه پاشش می‌کنند. در سمت دیگر سالن گلخانه چهار فن با فشار منفی قرار دارند که جریان هوای تازه را در داخل سالن برقرار می‌کنند. پس از اعتبار سنجی نتایج، از مدل توسعه‌یافته به منظور بررسی رفتار جریان و تاثیر انرژی نهان آب در تهویه گلخانه و رطوبت نسبی بهره گرفته شده‌است. با بررسی چهارده حالت تزریق رطوبت به هوای گلخانه، بهینه ترین حالت‌ به ازای فشار خروجی فن برابر 50 پاسکال، با مدل 27 افشانه و نرخ جریان جرمی پاشش قطرات معادل 04/0 بدست آمده است. از طرفی اگر با معیار تغییرات دما و شرایط محیطی مناسب، طرح‌های اشاره شده مورد بررسی قرار گیرند، مشاهده می‌شود حالتی که از مدل پد رطوبت‌زنی با فشار فن 100 پاسکال و نرخ جریان جرمی پاشش قطرات 08/0 استفاده می‌شود، بهترین طرح برای رشد گیاهانی چون گلایل در محیط گلخانه مورد بررسی خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Study on the Effects of Spray System and Wet Pads on the Greenhouse Temperature Distribution by Fan Ventilation System

نویسندگان [English]

  • Sajjad Shahriari 1
  • Mohammad Kazem Moayyedi 2
1 Master's degree, Department of Mechanical Engineering, University of Qom, Qom, Iran
2 Associate Professor, Research Laboratory of Earth Atmosphere and Space Sciences, Department of Mechanical Engineering, University of Qom, Qom, Iran
چکیده [English]

In this research, the behavior of air flow, temperature, and humidity changes in a greenhouse hall will be modeled with the help of numerical simulation. To increase the humidity of the air flowing inside the greenhouse hall, two amounts of 04 water are sprayed into the air passing into the greenhouse hall using three different methods. In the first method, two moisture pads and in the second method, two sprinklers spray water at specific and fixed distances and at a height of 3 meters from the floor of the greenhouse. In the third method, twenty-seven sprinklers spray water droplets in different coordinates to the passing air of the greenhouse. On the other side of the greenhouse hall, there are four fans with negative pressure, establishing the flow of fresh air inside the hall. To model the effects of turbulence in the flow field, the turbulence modeling approach has been used. After validating the numerical results, the outcome model has been used to study the flow behavior and the effect of the latent energy of water in greenhouse ventilation and relative humidity. By examining fourteen modes of moisture injection into the greenhouse, the most optimal mode - 50-b-27f has been obtained. On the other hand, if the mentioned plans are examined with the criterion of temperature changes and suitable environmental conditions, it can be seen that the 100-c-p mode will be the best plan for the growth of plants such as Gladiolus in the greenhouse environment.

کلیدواژه‌ها [English]

  • Greenhouse ventilation
  • computational fluid dynamics
  • temperature distribution
  • humidity ratio
  • evaporation

Smiley face

[1] Miller GR, Lewis GW, Hartmann, MJ. Shock Losses in Transonic Compressor Blade Rows. Journal of Engineering for Power.1961;83(3): 235-241.         DOI        10.1115/1.3673182
[2] Chen GT, Greitzer’ EM, Tan’ CS, Marble FE. Similarity Analysis of Compressor Tip Clearance Flow Structure. J. Turbomach. 1991; 113(2): 260-269.      DOI     10.1115/1.2929098
[3] Konig WM, Hennecke DK, Fottner L. Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part II-A Model for Supersonic Flow. J. Turbomach. Jan 1996; 118(1): 81-87.      DOI   10.1115/1.2836610
[4] Freeman C, Cumpsty N. A Method for the Prediction of Supersonic Compressor Blade Performance. published  1989.   DOI  10.1115/89-GT-326
 
[5] Ning F, Xu L. Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver With One-Equation Spalart-Allmaras Turbulence Model. ASME Turbo Expo 2001.     DOI     10.1115/2001-GT-0359
[6] Strazisar AJ. Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry. Twenty-ninth Annual International Gas Turbine Conference sponsored by the American Society of Mechanical Engineers Amsterdam, The Netherlands, June 3-7, 1984. Report Number: NASA-TM-83555
[7] Taghavi Zenouz R.  Abbasi S. Pirnia AR .Aerodynamic Design of Fan and Compressor Assembly for Turbofan Engines of Arbitrary By-Pass Ratio, Based on Streamline Curvature Method. Journal of Fluid Mechanics and Aerodynamics.2013 ;2(1): 47–58. (in persion).
[8] Hazrati Alisha S, Aslanian H, Broman M. Design of a Single-Stage Axial Passage Compressor with the Help of Software. 16th International Conference of the Iranian Aerospace Society.2016. (in persion).
[9] Sieverding F. Ribi B, Casey M. Meyer M. Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance J. Turbomach. 2004; 126(2): 323-331.  DOI  10.1115/1.1737782
[10] Iyengar V.  Sankar  L. Comprehensive Application of a First Principles Based Methodology for Design of Axial Compressor Configurations.  J. Turbomach. 2012; 134(6): 061035.    DOI    10.1115/1.4006301
[11] Lei F. Zhang C. Preliminary Optimization of Multi-Stage Axial-Flow Industrial Process Compressors Using Aero-Engine Compressor Design Strategy. Appl. Sci. 2021; 11(19), 9248.  DOI   10.3390/app11199248
[12] Sjögren O. Grönstedt T. Lundbladh A. Xisto C. Fan Stage Design and Performance Optimization for Low Specific Thrust Turbofans. Int. J. Turbomach. Propuls. Power. 2023; 8(4), 53. DOI  10.3390/ijtpp8040053
[13] Rabiei A. LakzianSimulation E. Simulation and thermodynamic analysis of a twin-shaft turbofan engine at design point and off-design point conditions. Aerospace Mechanics. 2019; 15(4) (in persion)
[14] Rafiei Y, Taghavi R. Laboratory study of axial and radial pressure distribution in a transonic axial compressor. Aerospace Mechanics. 2008;4(1)(in persion)
[15] Tayebi Rahni M. Ramezanizadeh M. Kimasi M R. Numerical simulation of three-dimensional turbulent incompressible layer cooling using RANS and LES approaches. Aerospace Mechanics. 2005;1(3). (in persion)
[16] Mahmoodi M, Ansari MR. Numerical investigation of the effects of the injection flow rate from the trailing edge of a gas turbine blade on the blade surface Mach number distribution using the RNG.k-ε turbulence model. Aerospace Mechanics.2005;1(2).(in persion)
[17] Sun Y, Ren Y, Fu S. The Unsteady Loss in One-Stage Transonic Compressor Under Peak Efficiency and Near Stall Conditions. Conference: ASME Turbo Expo 2008. DOI 10.1115/GT2008-51019
[18] Wadia AR, Law CH. Low Aspect Ratio Transonic Rotors: Part 2-Influence of Location of Maximum Thickness on Transonic Compressor Performance. J. Turbomach. 1993; 115(2): 226-239 . DOI  10.1115/1.2929227
[19] Altafi D, Mojaddam M, Bastankhah M. Entropy Generation Rate Analysis of Turbocharger Radial Flow Compressor in Range from Surge to Choke. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy 238(3). DOI 10.1177/09576509231216187
[20] Suder KL, Celestina ML. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. J. Turbomach. 1996; 118(2): 218-229       DOI 10.1115/1.2836629
[21] Altafi D, Mojaddam M, Javadi S, Mohammadi M . Entropy Generation Analysis of a Turbocharger Centrifugal Compressor in the Range Surge to Choke. Conference: 12th Annual International Conference on IC Engines (ICICE). At: Tehran. 2022.(in persion)
[22] Altafi D, Mojaddam M, Ghadimi B. Investigation of the Effect of the Geometric Deviations on the Performance of a Radial Flow Compressor Employing Uncertainty Quantification (UQ) and Sensitivity Analysis. Engine Research, 67(67): 51–63. DOI 10.22034/er.2022.697920
[23] Hah C, Bergner J, Schiffer HP. Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instability in an Axial Transonic Compressor Rotor. Conference: ASME Turbo Expo 2008. DOI 10.1115/GT2008-50105
 
[24] Yamada K, Funazaki K, Sasaki H. Numerical Investigation of Relation Between Unsteady Behavior of Tip Leakage Vortex and Rotating Disturbance in a Transonic Axial Compressor Rotor. ASME Turbo Expo 2008. DOI 10.1115/GT2008-50779
[25] Bennington MA, Cameron JD, Morris SC, Legault  C, Barrows ST, Chen P, Mcnulty  GS,  Wadia AR. Investigation of Tip-Flow Based Stall Criteria Using Rotor Casing Visualization. ASME Turbo Expo 2008. DOI  10.1115/GT2008-51319
[26] Hah C, Bergner J, Schiffer HP. Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms. Conference: ASME Turbo Expo 2006. DOI 10.1115/GT2006-90045
[27] Copenhaver WW, Ha C. A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor. J. Turbomach. Jul 1997; 119(3): 452-459. DOI   10.1115/1.2841144
[28] Hah C, Rabe DC, Wadia AR. Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor. Turbo Expo 2004, Parts A and B, ASMEDC, pp. 545–555. DOI 10.1115/GT2004-53867
[29] Mayhew ER, Hah C,  Wadia AR. The Effect of Tip Clearance on a Swept Transonic Compressor Rotor. J. Turbomach. Apr 1996; 118(2): 230-239.     DOI 10.1115/1.2836630
[30] Burguburu S, Toussaint C, Bonhomme C, Leroy G. Numerical Optimization of Turbomachinery Bladings.  J. Turbomach. Jan 2004, 126(1): 91-100 . DOI  10.1115/1.1645869
[31] Hah C, Puterbaugh SL, Wadia AR. Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep. ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. DOI  10.1115/98-GT-561
[32] Denton JD, Xu L. The Effects of Lean and Sweep on Transonic Fan Performance. ASME Turbo Expo 2002. DOI   10.1115/GT2002-30327
[33] Wadia AR Copenhaver WW. An Investigation of the Effect of Cascade Area Ratios on Transonic Compressor Performance. J. Turbomach. 1996; 118(4): 760-770. DOI  10.1115/1.2840932
[34] Chen N, Zhang H, Xu Y, Huang W. Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor. Journal of Thermal Science.2007;  16(2):105-114. DOI 10.1007/s11630-007-0105-3
[35] Wang DX, He L, Li YS, Wells RG. Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines-Part II: Validation and Application. J Turbomach,2010;  132(2). DOI 10.1115/1.3072498
[36] Farokhi S ., Aircraft Propulsion . John Wiley & Sons Ltd, New Delhi, India. 2014. ISBN: 978-1-1-118-80677-7
[37] Muchowski R, Gubernat S. Influence of Axial Compressor Model Simplification and Mesh Density on Surge Margin Evaluation. Advances in Science and Technology Research Journal. 2021; 15(3. 243–253. DOI 10.12913/22998624/140541
[38] Versteeg HK, Malalasekera W. An Introduction to Computational Fluid Dynamics. earson Education Limited. 2007. ISBN 0131274988, 9780131274983
[39]Romanova D, Ivanov O, Trifonov V, Ginzburg N, Korovina D, Ginzburg B, Koltunov N, Eglit M, Strijhak S, .Calibration of the K-ω SST Turbulence Model for Free Surface Flows on Mountain Slopes Using an Experiment. Fluids. 2022: 7(3), 111.    DOI 10.3390/fluids7030111
[40] Könözsy L. The Kω Shear-Stress Transport (SST) Turbulence Model. Fluid Mechanics and Its Applications, Springer Netherlands. 2019; 57–66. DOI 10.1007/978-3-030-13543-0_3
[38] René Van den Braembussche. Design and Analysis of Centrifugal Compressors. co-publication between ASME Press and JohnWiley & Sons Ltd.2019. ISBN: 978-1-119-42409-3
دوره 13، شماره 1 - شماره پیاپی 33
بهار و تابستان 1403
مرداد 1403
  • تاریخ دریافت: 01 فروردین 1403
  • تاریخ بازنگری: 12 خرداد 1403
  • تاریخ پذیرش: 02 تیر 1403
  • تاریخ انتشار: 01 مرداد 1403