مطالعه عددی تأثیرات سیستم افشانه و پدهای مرطوب در توزیع دمای گلخانه‌ای با سیستم تهویه فن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مکانیک، دانشگاه قـم، قم، ایران

2 دانشیار، آزمایشگاه پژوهشی اتمسفر زمین و علوم فضایی، گروه مهندسی مکانیک، دانشگاه قـم، قم، ایران

چکیده

در این پژوهش رفتار جریان هوا، تغییرات دما و رطوبت در یک سالن گلخانه به کمک شبیه‌سازی عددی مطالعه شده است. به‌منظور رطوبت‌دهی به هوای در حال جریان داخل سالن گلخانه، دو میزان 04/0 و 08/0 کیلوگرم بر ثانیه آب با سه روش متفاوت به هوای عبوری به سالن گلخانه پاشش می‌شود در روش اول دو پد رطوبتی با مجموع سطح مقطع 15 متر مربع و در روش دوم دو افشانه در فاصله 5 و 30 متری از دیوار ابتدایی سالن و در ارتفاع 3 متری از کف گلخانه عملیات پاشش آب را انجام می‌دهند.  در روش سوم، بیست­وهفت افشانه عملیات پاشش قطرات آب را در مختصات مختلف به هوای عبوری گلخانه پاشش می­کنند. در سمت دیگر سالن گلخانه چهار فن با فشار منفی قرار دارند که جریان هوای تازه را در داخل سالن برقرار می­کنند. پس از اعتبار سنجی نتایج، از مدل توسعه‌یافته به منظور بررسی رفتار جریان و تاثیر انرژی نهان آب در تهویه گلخانه و رطوبت نسبی بهره گرفته شده‌است. با بررسی چهارده حالت تزریق رطوبت به هوای گلخانه، بهینه ترین حالت­ به ازای فشار خروجی فن برابر 50 پاسکال، با مدل 27 افشانه و نرخ جریان جرمی پاشش قطرات معادل 04/0 بدست آمده است. از طرفی اگر با معیار تغییرات دما و شرایط محیطی مناسب، طرح‌های اشاره شده مورد بررسی قرار گیرند، مشاهده می‌شود حالتی که از مدل پد رطوبت‌زنی با فشار فن 100 پاسکال و نرخ جریان جرمی پاشش قطرات 08/0 استفاده می‌شود، بهترین طرح برای رشد گیاهانی چون گلایل در محیط گلخانه مورد بررسی خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Study on the Effects of Spray System and Wet Pads on the Greenhouse Temperature Distribution by Fan Ventilation System

نویسندگان [English]

  • Sajjad Shahriari 1
  • Mohammad Kazem Moayyedi 2
1 Master's degree, Department of Mechanical Engineering, University of Qom, Qom, Iran
2 Associate Professor, Research Laboratory of Earth Atmosphere and Space Sciences, Department of Mechanical Engineering, University of Qom, Qom, Iran
چکیده [English]

In this research, the behavior of air flow, temperature, and humidity changes inside a greenhouse will be modeled using numerical simulation. To increase the humidity of the air flowing inside the greenhouse, water is sprayed into the air with two amounts of mass flow rate, through the greenhouse using three different methods. In the first method, two moisturized pads are used. In the second method, two water sprays at specific distances and a height of 3m from the greenhouse floor are used. In the third method, twenty-seven water droplet sprays in different locations are used. On the other side of the greenhouse hall, there are four fans with negative pressure, establishing fresh air flow inside the hall. The turbulence modeling approach was used to model the effects of turbulence in the flow field. After validating the numerical results, the outcome model has been used to study the flow behavior and the effect of the latent energy of water in greenhouse ventilation and relative humidity. By examining fourteen conditions of water droplet injection inside the greenhouse, the most suitable condition contains 50pa back pressure, 27 sprays, and a mass flow rate of droplet injection of 0.04 kg/s. On the other hand, if the mentioned plans are examined with the criterion of temperature changes and suitable environmental conditions. It can be seen that the outlet pressure of 100pa and mass flow rate of 0.08kg/s for water droplet injection in moisturized pad configuration, will be the best plan for the growth of plants such as Gladiolus in the greenhouse environment.

کلیدواژه‌ها [English]

  • Greenhouse Ventilation
  • computational Fluid Dynamics
  • Temperature Distribution
  • Humidity Ratio
  • Evaporation

Smiley face

  1. Norton, D. W. Sun, J. Grant, R. Fallon, and V. Dodd, “Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: A review,” Bioresour. Technol., vol. 98, no. 12, pp. 2386–2414, 2007, doi: 10.1016/j.biortech.2006.11.025.
  2. K. Chourasia and T. K. Goswami, “CFD simulation of effects of operating parameters and product on heat transfer and moisture loss in the stack of bagged potatoes,” J. Food Eng., vol. 80, no. 3, pp. 947–960, 2007, doi: 10.1016/j.jfoodeng.2006.07.015.
  3. He et al., “Ventilation optimization of solar greenhouse with removable back walls based on CFD,” Comput. Electron. Agric., vol. 149, no. March, pp. 16–25, 2018, doi: 10.1016/j.compag.2017.10.001.
  4. woo Kim, S. woon Hong, I. bok Lee, and K. seok Kwon, “Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 2: Application of the CFD model,” Biosyst. Eng., vol. 164, pp. 257–280, 2017, doi: 10.1016/j.biosystemseng.2017.09.011.
  5. woo Kim, I. bok Lee, and K. seok Kwon, “Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model,” Biosyst. Eng., vol. 164, pp. 235–256, 2017, doi: 10.1016/j.biosystemseng.2017.09.008.
  6. W. Hong et al., “Validation of an open source CFD code to simulate natural ventilation for agricultural buildings,” Comput. Electron. Agric., vol. 138, pp. 80–91, 2017, doi: 10.1016/j.compag.2017.03.022.
  7. Xie, X. H. Qu, J. Y. Shi, and D. W. Sun, “Effects of design parameters on flow and temperature fields of a cold store by CFD simulation,” J. Food Eng., vol. 77, no. 2, pp. 355–363, 2006, doi: 10.1016/j.jfoodeng.2005.06.044.
  8. E. Bournet and T. Boulard, “Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies,” Comput. Electron. Agric., vol. 74, no. 2, pp. 195–217, 2010, doi: 10.1016/j.compag.2010.08.007.
  9. Saberian and S. M. Sajadiye, “The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation,” Renew. Energy, vol. 138, pp. 722–737, 2019, doi: 10.1016/j.renene.2019.01.108.
  10. Dhiman, V. P. Sethi, B. Singh, and A. Sharma, “CFD analysis of greenhouse heating using flue gas and hot water heat sink pipe networks,” Comput. Electron. Agric., vol. 163, no. June, p. 104853, 2019, doi: 10.1016/j.compag.2019.104853.
  11. Pakari and S. Ghani, “Airflow assessment in a naturally ventilated greenhouse equipped with wind towers: numerical simulation and wind tunnel experiments,” Energy Build., vol. 199, pp. 1–11, 2019, doi: 10.1016/j.enbuild.2019.06.033.
  12. Pakari and S. Ghani, “Evaluation of a novel greenhouse design for reduced cooling loads during the hot season in subtropical regions,” Sol. Energy, vol. 181, no. February, pp. 234–242, 2019, doi: 10.1016/j.solener.2019.02.006.
  13. A. Villagrán, E. J. Baeza Romero, and C. R. Bojacá, “Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate,” Biosyst. Eng., vol. 188, pp. 288–304, 2019, doi: 10.1016/j.biosystemseng.2019.10.026.
  14. Ghani et al., “Experimental and numerical investigation of the thermal performance of evaporative cooled greenhouses in hot and arid climates,” Sci. Technol. Built Environ., vol. 26, no. 2, pp. 141–160, 2020, doi: 10.1080/23744731.2019.1634421.
  15. A. Sapounas, T. Bartzanas, C. Nikita-Martzopoulou, and C. Kittas, “Aspects of CFD modelling of a fan and pad evaporative cooling system in greenhouses,” Int. J. Vent., vol. 6, no. 4, pp. 379–388, 2008, doi: 10.1080/14733315.2008.11683793.
  16. A. Sapounas, S. Hemming, H. F. De Zwart, and J. B. Campen, “Influence of Insect Nets and Thermal Screens on Climate Conditions of Commercial Scale Greenhouses: a Cfd Approach,” XVIIth World Congr. Int. Comm. Agric. Biosyst. Eng., pp. 1–11, 2010.
  17. Bartzanas, T. Boulard, and C. Kittas, “Effect of vent arrangement on windward ventilation of a tunnel greenhouse,” Biosyst. Eng., vol. 88, no. 4, pp. 479–490, 2004, doi: 10.1016/j.biosystemseng.2003.10.006.
  18. Piscia, J. I. Montero, E. Baeza, and B. J. Bailey, “A CFD greenhouse night-time condensation model,” Biosyst. Eng., vol. 111, no. 2, pp. 141–154, 2012, doi: 10.1016/j.biosystemseng.2011.11.006.
  19. Zhang, Z. Fu, M. Yang, X. Liu, Y. Dong, and X. Li, “Nonlinear simulation for coupling modeling of air humidity and vent opening in Chinese solar greenhouse based on CFD,” Comput. Electron. Agric., vol. 162, no. April, pp. 337–347, 2019, doi: 10.1016/j.compag.2019.04.024.
  20. W. Wang, J. Y. Luo, and X. P. Li, “CFD based study of heterogeneous microclimate in a typical chinese greenhouse in central China,” J. Integr. Agric., vol. 12, no. 5, pp. 914–923, 2013, doi: 10.1016/S2095-3119(13)60309-3.
  21. B. Campen and G. P. A. Bot, “Dehumidification in greenhouses by condensation on finned pipes,” Biosyst. Eng., vol. 82, no. 2, pp. 177–185, 2002, doi: 10.1006/bioe.2002.0058.
  22. Franco, D. L. Valera, A. Peña, and A. M. Pérez, “Aerodynamic analysis and CFD simulation of several cellulose evaporative cooling pads used in Mediterranean greenhouses,” Comput. Electron. Agric., vol. 76, no. 2, pp. 218–230, 2011, doi: 10.1016/j.compag.2011.01.019.
  23. Chen, Y. Cai, F. Xu, H. Hu, and Q. Ai, “Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD,” Adv. Mech. Eng., vol. 2014, doi: 10.1155/2014/712740.
  24. W. Kim, I. B. Lee, and K.S. Kwon, “Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model,” Biosystems Engineering, Vol. 164, pp. 235-256, 2017.
  25. Cengel and C. Boles, “Thermodynamics: an engineering approach,” 2544.
  26. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications” AIAA J., vol. 32, no. 8, pp. 1598–1605, 1994, doi: 10.2514/3.12149.
  27. Mathala J. Gupta, Pitam Chandra, “Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control,” Energy. No. 27, pp. 777–794, 2002, doi: 10.1016/S0360-5442(02)00030-0.
  28. Shahryari, " Numerical Simulation of Air Flow in an Agricultural Greenhouse and Studying the Effects of Temperature and Humidity Variations on Increasing the Quality of Plant Growth Indicators Using Computational Fluid Dynamics", M,Sc, Thesis in Mechanical Engineering, University of Qom, 2020.
  29. Moayyedi, M. K., Bashardust, A. “Numerical Simulation of Airflow and Particle Deposition from the Surface of Raw Materials Piles and Studying the Effects of Shape Variations and Free-Stream Velocity in Wind Erosion Reduction,” Civil Infrastructure Researches, Vol. 5, No.1, pp.121-134, 2019, doi: 10.22091/cer.2019.4211.1143
  30. Cengel and C. Boles, Thermodynamics: An Engineering Approach (Fifth Edition), McGraw-Hill, New York, 2006.
  31. Abderrahman, M., Abdelaziz, B., & Abdelkader, O. (2021, September). CFD Modeling of An Even-Span Greenhouse Dryer Under Natural and Forced Convection Modes,”Journal of Physics: Conference Series, Vol. 2022, No. 1, pp. 12-30), 2021.
دوره 13، شماره 1 - شماره پیاپی 33
بهار و تابستان 1403
مرداد 1403
صفحه 149-164
  • تاریخ دریافت: 16 فروردین 1403
  • تاریخ بازنگری: 12 خرداد 1403
  • تاریخ پذیرش: 02 تیر 1403
  • تاریخ انتشار: 01 مرداد 1403