[1] Brennen, C. “A numerical solution of axisymmetric cavity flows”, J. Fluid Mech. 37 (1969). DOI:10.1017/S0022112069000802.
[2] Acosta, A.J., and Parkin, B.R. “Cavitation inception - a selective review”, (1974). https://doi.org/10.5957/jsr.1975.19.4.193.
[3] Hu, C., Yang, H.L., Zhao, C.B., and Huang, W.H. “Unsteady supercavitating flow past cones”, J. Hydrodyn. 18 (2006). DOI:10.1016/S1001-6058(06)60002-4.
[4] Gavzan, I.J., and Rad, M. “Experimental analysis of cavitaion effects on drag force and back pressure of circular cylinder with free turbulence”, Sci. Iran. 16 (2009).
[5] Biluš, I., Bombek, G., Hočevar, M., Širok, B., Cenčič, T., and Petkovšek, M. “The experimental analysis of cavitating structure fluctuations and pressure pulsations in the cavitation station, Stroj”, Vestnik/Journal Mech. Eng. 60 (2014). DOI:10.5545/sv-jme.2013.1462.
[6] Sedlá, M., Komárek, M., Rudolf, P., Kozák, J., and Huzlík, R. “Numerical and experimental research on unsteady cavitating flow around NACA 2412 hydrofoil”, in: IOP Conf. Ser. Mater. Sci. Eng., 2015. DOI:10.1088/1757-899X/72/2/022014.
[7] Sarrashtari, A., and Najafi, V. “Comparison and appropriate selection of mass transfer models for predicting cavitation in internal flows”, Fluid Mechanics and Aerodynamics, 1392;2(2). .
[11] Shamloo, A., Ebrahimi, S., Amani, A., and Fallah, F. “Targeted Drug Delivery of Microbubble to Arrest Abdominal Aortic Aneurysm Development: A Simulation Study Towards Optimized Microbubble Design”, Sci. Rep. (2020). DOI:10.1038/s41598-020-62410-3.
[12] Ebrahimi, S., Shamloo, A., Alishiri, M., Mozhdehbakhsh Mofrad, Y., and Akherati, F. “Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion”, Int. J. Pharm. (2021) 121133. DOI:10.1016/j.ijpharm.2021.121133.
[13] Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., and Mofrad, M.R.K. “Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields”, Eng. Appl. Comput. Fluid Mech. 15 (2021) 1703–1725. https://doi.org/10.1080/19942060.2021.1989042.
[14] Shamloo, A., Amani, A., Forouzandehmehr, M., and Ghoytasi, I. “In Silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque”, Int. J. Pharm. (2019). DOI:10.1016/j.ijpharm.2018.12.088.
[15] Kim, C.S., Iglesias, A.J., and Garcia, L. “Deposition of Inhaled Particles in Bifurcating Airway Models: II. Expiratory Deposition”, J. Aerosol Med. Depos. Clear. Eff. Lung. 2 (1989). https://doi.org/10.1089/jam.1989.2.15.
[16] Amani, A., Shamloo, A., Vatani, P., and Ebrahimi, S. “Particles Focusing and Separation by a Novel Inertial Microfluidic Device: Divergent Serpentine Microchannel”, Ind. Eng. Chem. Res. 0 (n.d.) null. https://doi.org/10.1021/acs.iecr.2c02451.
[17] Manzoori, A., Fallah, F., Sharzehee, M., and Ebrahimi, S., “Computational Investigation of the Stability of Stenotic Carotid Artery under Pulsatile Blood Flow Using a Fluid-Structure Interaction Approach”, Int. J. Appl. Mech. 12 (2020) 1758–8251. https://doi.org/10.1142/S1758825120501100.
[18] Farajollahi, A., Mokhtari, A., Rostami, M., Imani, K., and Salimi, M. “Numerical study of using perforated conical turbulators and added nanoparticles to enhance heat transfer performance in heat exchangers”, Scientia Iranica, 2023, 30(3), pp. 1027-1038. doi: 10.24200/sci.2022.59717.6394
[19] Ranjbar, H., Farajollahi, A. and Rostami, M. “Targeted drug delivery in pulmonary therapy based on adhesion and transmission of nanocarriers designed with a metal–organic framework”, Biomech Model Mechanobiol 22, 2153–2170 (2023). https://doi.org/10.1007/s10237-023-01756-9
[20] Saleh-Abadi, M., Rostami, M., and Farajollahi, A. “Successive expansion and contraction of tubes (SECTs) in a novel design of shell-and-tube heat exchanger: a comparison between basic, finned and non-finned designs”, J Braz. Soc. Mech. Sci. Eng. 45, 444 (2023). DOI:10.1007/s40430-023-04356-x.
[21] Saleh-Abadi, M., Rahmati, A., Farajollahi, A. et al. “Optimization of geometric indicators of a ventricular pump using computational fluid dynamics, surrogate model, response surface approximation, kriging and particle swarm optimization algorithm”, J Braz. Soc. Mech. Sci. Eng. 45, 431 (2023). DOI:10.1007/s40430-023-04355-y
[22]
Farajollahi, A.H., Rostami, M., and Naderi, A.A. “Reconstruction of the Fluid Velocity Field Measured by SPIV via Artificial Neural Networks”, Fluid Mechanics & Aerodynamics Journal, Vol. 11, No. 1, pp.57-70,2022.(In Pershian).DOR: 20.1001.1.23223278.1401.11.1.4.6 )
[23]
Farajollahi, A.H., Yahyaabadi, M.M., and Pourseifi, M., “Numerical Investigation of Heat Transfer Enhancement in an Automotive Radiator Utilizing Mini-Channel Tubes and Tubes Configuration”, Fluid Mechanics & Aerodynamics Journal, Vol. 11, No. 2, pp.39-52, 2023. (In Persian)
[24] Avecilla, F.R.B., Farajollahi, A., Rostami, M. Yadav, A., and Flores, J. “Successive expansion and contraction of tubes (SECT) in a novel design of shell-and-tube heat exchanger: entropy generation analysis”, J Braz. Soc. Mech. Sci. Eng. 46, 267 (2024). DOI:10.1007/s40430-024-04850-w.
[25] Amani, A., and Farajollahi, A.H. “Drug Delivery Angle for Various Atherosclerosis and Aneurysm Percentages of the Carotid Artery”, Molecular Pharmaceutics, 2024 21 (4), 1777-1793, DOI: 10.1021/acs.molpharmaceut.3c01109.
[26] Ebrahimi, S., and Fallah, F. “Investigation of coronary artery tortuosity with atherosclerosis: A study on predicting plaque rupture and progression”, Int. J. Mech. Sci. 223 (2022) 107295. DOI:10.1016/j.ijmecsci.2022.107295.
[27] Segré, G., and Silberberg, A. “Radial particle displacements in poiseuille flow of suspensions, Nature. 189 (1961). DOI:10.1038/189209a0.
[28] Di Carlo, D. “Inertial microfluidics, Lab Chip”, 9 (2009). DOI:10.1039/b912547g.