1. Sepehrnia M, Mohammadzadeh K, Veyseh MM, Agah E, Amani M. Rheological behavior of engine oil based hybrid nanofluid containing MWCNTs and ZnO nanopowders: Experimental analysis, developing a novel correlation, and neural network modeling. Powder Technol. 2022;404:117492. https://doi.org/10.1016/j.powtec.2022.117492
2. Selmani A, Kovačević D, Bohinc K. Nanoparticles: From synthesis to applications and beyond. Adv. Colloid Interface Sci.. 2022;303:102640. https://doi.org/10.1016/j.cis.2022.102640
3. Yang Y, Du Y, Zhang J, Zhang H, Guo B. Structural and functional design of electrospun nanofibers for hemostasis and wound healing. AFM. 2022;4(5):1027-57. https://doi.org/10.1007/s42765-022-00178-z
4. Hamzat AK, Omisanya MI, Sahin AZ, Oyetunji OR, Olaitan NA. Application of nanofluid in solar energy harvesting devices: A comprehensive review. Energy Convers. Manage.. 2022;266:115790. https://doi.org/10.1016/j.enconman.2022.115790
5. Maxwell JC. The Scientific Letters and Papers of James Clerk Maxwell: Volume 1, 1846-1862: CUP Archive; 1990.
6. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles.ANL, Argonne, IL (United States); 1995.
7. Hosseinzadeh K, Moghaddam ME, Hatami M, Ganji D, Ommi F. Experimental and numerical study for the effect of aqueous solution on heat transfer characteristics of two phase close thermosyphon. ICHMT. 2022;135:106129. https://doi.org/10.1016/j.icheatmasstransfer.2022.106129
8. Younes H, Mao M, Murshed SS, Lou D, Hong H, Peterson G. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Appl. Therm. Eng. 2022;207:118202. https://doi.org/10.1016/j.applthermaleng.2022.118202
9. Wohld J, Beck J, Inman K, Palmer M, Cummings M, Fulmer R, Vafaei S. Hybrid Nanofluid Thermal Conductivity and Optimization: Original Approach and Background. Nanomater. 2022;12(16):2847. https://doi.org/10.3390/nano12162847
10. Yasir M, Hafeez A, Khan M. Thermal conductivity performance in hybrid (SWCNTs-CuO/Ehylene glycol) nanofluid flow: Dual solutions. ASEJ. 2022;13(5):101703. https://doi.org/10.1016/j.asej.2022.101703
11. Rashidi M, Alhuyi Nazari M, Mahariq I, Ali N. Modeling and sensitivity analysis of thermal conductivity of ethylene glycol-water based nanofluids with alumina nanoparticles. Exp. Tech. 2023;47(1):83-90. https://doi.org/10.1007/s40799-022-00567-4
12. Qiu L, Zhu N, Feng Y, Michaelides EE, Żyła G, Jing D, et al. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Phys. Rep. 2020;843:1-81. https://doi.org/10.1016/j.physrep.2019.12.001
13. Paul G, Pal T, Manna I. Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique. J. Colloid Interface Sci. 2010;349(1):434-7. https://doi.org/10.1016/j.jcis.2010.05.086
14. Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J. Clean. Prod. 2018;190:169-92. https://doi.org/10.1016/j.jclepro.2018.04.146
15. Suresh S, Venkitaraj K, Selvakumar P, Chandrasekar M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Therm. Fluid Sci. 2012;38:54-60. https://doi.org/10.1016/j.expthermflusci.2011.11.007
16. Sundar LS, Singh MK, Sousa AC. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. ICHMT. 2014;52:73-83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
17. Batmunkh M, Tanshen MR, Nine MJ, Myekhlai M, Choi H, Chung H, Jeong H. Thermal conductivity of TiO2 nanoparticles based aqueous nanofluids with an addition of a modified silver particle. Ind. Eng. Chem. Res. 2014;53(20):8445-51. https://doi.org/10.1021/ie403712f
18. Baby TT, Ramaprabhu S. Synthesis and nanofluid application of silver nanoparticles decorated graphene. J. Mater. Chem.. 2011;21(26):9702-9. https://doi.org/10.1039/C0JM04106H
19. Aravind SJ, Ramaprabhu S. Graphene–multiwalled carbon nanotube-based nanofluids for improved heat dissipation. Rsc Advances. 2013;3(13):4199-206. https://doi.org/10.1039/C3RA22653K
20. Han Z, Yang B, Kim SH, Zachariah MR. Application of hybrid sphere/carbon nanotube particles in nanofluids. Nanotechnol. 2007;18(10):105701. https://doi.org/10.1088/0957-4484/18/10/105701
21. Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim. Acta. 2012;549:87-94. https://doi.org/10.1016/j.tca.2012.09.006
22. Paul G, Philip J, Raj B, Das PK, Manna I. Synthesis, characterization, and thermal property measurement of nano-Al95Zn05 dispersed nanofluid prepared by a two-step process. Int. J. Heat Mass Transf. 2011;54(15-16):3783-8. https://doi.org/10.1016/j.ijheatmasstransfer.2011.02.044
23. Abbasi SM, Rashidi A, Nemati A, Arzani K. The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 2013;39(4):3885-91. https://doi.org/10.1016/j.ceramint.2012.10.232
24. Nine M, Munkhbayar B, Rahman M, Chung H, Jeong H. Highly productive synthesis process of well dispersed Cu₂O and Cu/Cu₂O nanoparticles and its thermal characterization. 2013. https://doi.org/10.1016/j.matchemphys.2013.05.032
25. Lin C, Zhou J, Lu Q, Khabaz MK, Andani AK, Al-Yasiri M, Pan G. Thermal conductivity prediction of WO3-CuO-Ag (35: 40: 25)/water hybrid ternary nanofluid with Artificial Neural Network and back-propagation algorithm. Mater. Today Commun. 2023;36:106807. https://doi.org/10.1016/j.mtcomm.2023.106807
26. Alsangur R, Doganay S, Ates İ, Turgut A, Cetin L, Rebay M. Magnetic field dependent thermal conductivity investigation of water based Fe3O4/CNT and Fe3O4/graphene magnetic hybrid nanofluids using a Helmholtz coil system setup. Diam. Relat. Mater. 2024;141:110716. https://doi.org/10.1016/j.diamond.2023.110716
27. Qu Y, Jasim DJ, Sajadi SM, Salahshour S, Rahmanian A, Baghaei S. Artificial neural network modeling of thermal characteristics of WO3-CuO (50: 50)/water hybrid nanofluid with a back-propagation algorithm. Mater. Today Commun. 2024;38:108169. https://doi.org/10.1016/j.mtcomm.2024.108169
28. Wanatasanappan VV, Kanti PK, Sharma P, Husna N, Abdullah M. Viscosity and rheological behavior of Al2O3-Fe2O3/water-EG based hybrid nanofluid: A new correlation based on mixture ratio. J. Mol. Liq.. 2023;375:121365. https://doi.org/10.1016/j.molliq.2023.121365
29. Pavithra K, Hanumagowda B, Raju SSK, Varma S, Murshid N, Mulki H, Al-Kouz W. Thermal Radiation and Mass Transfer Analysis in an Inclined Channel Flow of a Clear Viscous Fluid and H2O/EG-Based Nanofluids through a Porous Medium. Sustainability. 2023;15(5):4342. https://doi.org/10.3390/su15054342
30. Yahya AU, Salamat N, Huang W-H, Siddique I, Abdal S, Hussain S. Thermal charactristics for the flow of Williamson hybrid nanofluid (MoS2+ ZnO) based with engine oil over a streched sheet. Case Stud. Therm. Eng. 2021;26:101196. https://doi.org/10.1016/j.csite.2021.101196
31. Sepehrnia M, Mohammadzadeh K, Rozbahani MH, Ghiasi MJ, Amani M. Experimental study, prediction modeling, sensitivity analysis, and optimization of rheological behavior and dynamic viscosity of 5W30 engine oil based SiO2/MWCNT hybrid nanofluid. ASEJ. 2023:102257. https://doi.org/10.1016/j.asej.2023.102257
32. Murshed SS, de Castro CN, editors. Contribution of Brownian motion in thermal conductivity of nanofluids. Proceedings of the world congress on engineering; 2011.
33. Rudyak VY, Pryazhnikov MI, Minakov AV, Shupik AA. Comparison of thermal conductivity of nanofluids with single-walled and multi-walled carbon nanotubes. Diam. Relat. Mater. 2023;139:110376. https://doi.org/10.1016/j.diamond.2023.110376
34. Poloju VK, Khadanga V, Mukherjee S, Mishra PC, Aljuwayhel NF, Ali N. Thermal conductivity and dispersion properties of SDBS decorated ternary nanofluid: Impacts of surfactant inclusion, sonication time and ageing. J. Mol. Liq. 2022;368:120832. https://doi.org/10.1016/j.molliq.2022.120832
35. Han X, Liang H, Wang Q. Unraveling the effect of surfactant on the preparation of 40 nm Cu2O nanofluids for enhanced thermal conductivity. Inorg. Chem. Commun. 2023;153:110725. https://doi.org/10.1016/j.inoche.2023.110725
36. Rostamian SH, Biglari M, Saedodin S, Esfe MH. An inspection of thermal conductivity of CuO-SWCNTs hybrid nanofluid versus temperature and concentration using experimental data, ANN modeling and new correlation. J. Mol. Liq.. 2017;231:364-9. https://doi.org/10.1016/j.molliq.2017.02.015
37. Atashafroz M, Barchipour K, and Aminizadeh N, Three-dimensional analysis of forced displacement flow in a stepped channel with consideration of the mutual effects of magnetic field and solid nanoparticles, https://civilica.com/doc/1187024 2019. (InPersian) https://fma.ihu.ac.ir/article_205832.html
38. Esfe MH, Tamrabad SNH, Hatami H, Alidoust S, Toghraie D. Using the RSM to evaluate the rheological behavior of SiO2 (60%)-MWCNT (40%) /SAE40 oil hybrid nanofluid and investigating the effect of different parameters on the viscosity. Tribol. Int. 2023;184:108479. https://doi.org/10.1016/j.triboint.2023.108479
39. Esfe MH, Motallebi SM, Toghraie D. Optimal viscosity modelling of 10W40 oil-based MWCNT (40%)-TiO2 (60%) nanofluid using Response Surface Methodology (RSM). Heliyon. 2022;8(12). https://doi.org/10.1016/j.heliyon.2022.e11944
40. Esfe MH, Alidoust S, Tamrabad SNH, Toghraie D, Hatami H. Thermal conductivity of MWCNT-TiO2/Water-EG hybrid nanofluids: Calculating the price performance factor (PPF) using statistical and experimental methods (RSM). Case Stud. Therm. Eng. 2023;48:103094. https://doi.org/10.1016/j.csite.2023.103094
41. Esfe M H, Laboratory and comparative study of thermophysical properties of different nanofluids with the aim of choosing the best nanolubricant, vol. 18, pp. 125-142 2022. [Online]. Available: https://sid.ir/paper/1052188/fa (In Persian) https://maj.ihu.ac.ir/article_207377.html
42. Esfe M H and Motallebii S, "Experimental study of the effect of effective parameters on the coefficient of thermal conductivity of five-component hybrid nanofluid,", pp. 141–154، 2022. (In persian) https://maj.ihu.ac.ir/article_207382.html?lang=fa
43. Zhang R, Qing S, Zhang X, Luo Z, Liu Y. Enhanced thermal conductivity in Ag-H2O nanofluids by nanoparticles of different shapes: Insights from molecular dynamics simulation. J. Mol. Liq. 2023;388:122750. https://doi.org/10.1016/j.molliq.2023.122750
44. Zhang R, Zhang X, Qing S, Luo Z, Liu Y. Investigation of nanoparticles shape that influence the thermal conductivity and viscosity in argon-based nanofluids: A molecular dynamics simulation. Int. J. Heat Mass Transf. . 2023;207:124031. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124031
45. Ghafouri A, Toghraie D. Experimental study on thermal conductivity of SiC-ZnO/ethylene glycol hybrid nanofluid: proposing an optimized multivariate correlation. J. Taiwan Inst. Chem. Eng. 2023;148:104824. https://doi.org/10.1016/j.jtice.2023.104824
46. Milyani AH, Al-Ebrahim MA, Attar ET, Abu-Hamdeh NH, Mostafa ME, Nusier OK, et al. Artificial intelligence optimization and experimental procedure for the effect of silicon dioxide particle size in silicon dioxide/deionized water nanofluid: Preparation, stability measurement and estimate the thermal conductivity of produced mixture. JMR&T. 2023;26:2575-86. https://doi.org/10.1016/j.jmrt.2023.08.074
47. Duangthongsuk W, Wongwises S. An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime. Int. J. Heat Mass Transf. 2010;53(1-3):334-44. https://doi.org/10.1016/j.ijheatmasstransfer.2009.09.024
48. Suganthi K, Vinodhan VL, Rajan K. Heat transfer performance and transport properties of ZnO–ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl. Energy. 2014;135:548-59. https://doi.org/10.1016/j.apenergy.2014.09.023
49. Satti JR, Das DK, Ray D. Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations. Int. J. Heat Mass Transf. 2017;107:871-81. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.121
50. Gupta J, Pandey BK, Dwivedi D, Mishra S, Jaiswal RL, Pandey S. Experimental studies on thermal conductivity of metal oxides/water-ethylene glycol (50%-50%) nanofluids with varying temperature and concentration using ultrasonic interferometer. Physica B Condens. Matter. 2023;670:415376. https://doi.org/10.1016/j.physb.2023.415376
51. Murshed S, Leong K, Yang C. A combined model for the effective thermal conductivity of nanofluids. Appl. Therm. Eng. 2009;29(11-12):2477-83. https://doi.org/10.1016/j.applthermaleng.2008.12.018
52. Jang SP, Choi SU. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 2004;84(21):4316-8. https://doi.org/10.1063/1.1756684
53. Prasher R, Bhattacharya P, Phelan PE. Brownian-motion-based convective-conductive model for the effective thermal conductivity of nanofluids. 2006. https://doi.org/10.1115/1.2188509
55. Maxwell JC. A treatise on electricity and magnetism: Oxford: Clarendon Press; 1873.
56. Esfe MH, Alirezaie A, Toghraie D. Thermal conductivity of ethylene glycol based nanofluids containing hybrid nanoparticles of SWCNT and Fe3O4 and its price-performance analysis for energy management. JMR&T. 2021;14:1754-60. https://doi.org/10.1016/j.jmrt.2021.07.033
57. Selvan P, Jebakani D, Jeyasubramanian K, Jebaraj DJJ. Enhancement of thermal conductivity of water based individual and hybrid SiO2/Ag nanofluids with the usage of calcium carbonate nano particles as stabilizing agent. J. Mol. Liq. 2022;345:117846. https://doi.org/10.1016/j.molliq.2021.117846
58. Dehkordi MHR, Alizadeh Aa, Zekri H, Rasti E, Kholoud MJ, Abdollahi A, Azimy H. Experimental study of thermal conductivity coefficient of GNSs-WO3/LP107160 hybrid nanofluid and development of a practical ANN modeling for estimating thermal conductivity. Heliyon. 2023;9(6). https://doi.org/10.1016/j.heliyon.2023.e17539
59. Esfe MH, Alidoust S, Toghraie D. Comparison of thermal conductivity of water-based nanofluids with various combinations of MWCNT, CuO, and SiO2 nanoparticles for using in heating systems. Case Stud. Therm. Eng. 2023;42:102683. https://doi.org/10.1016/j.csite.2022.102683
60. Khan IA. Experimental validation of enhancement in thermal conductivity of titania/water nanofluid by the addition of silver nanoparticles. ICHMT. 2021;120:104910. https://doi.org/10.1016/j.icheatmasstransfer.2020.104910
61. Esfe MH, Alidoust S, Esfandeh S, Toghraie D, Hatami H, Kamyab MH, Ardeshiri EM. Theoretical-experimental study of factors affecting the thermal conductivity of SWCNT-CuO (25: 75)/water nanofluid and challenging comparison with CuO nanofluids/water. Arab. J. Chem. 2023;16(5):104689. https://doi.org/10.1016/j.arabjc.2023.104689
62. Sundar LS, Sangaraju S, Mouli KVC. Effect of magnetic field on the thermal conductivity and viscosity of magnetic manganese oxide/ethylene glycol nanofluids: An experimental and ANFIS approach. J. Magn. Magn. Mater. 2023;588:171386. https://doi.org/10.1016/j.jmmm.2023.171386
63. Pavithra K, Parol V, Brusly Solomon A, Yashoda M. Investigation of thermal conductivity and thermal performance of heat pipes by structurally designed copolymer stabilized ZnO nanofluid. Sci. Rep. 2023;13(1):14219. https://doi.org/10.1038/s41598-023-39598-1
64. Sahin F, Genc O, Gökcek M, Çolak AB. An experimental and new study on thermal conductivity and zeta potential of Fe3O4/water nanofluid: Machine learning modeling and proposing a new correlation. Powder Technol. 2023;420:118388. https://doi.org/10.1016/j.powtec.2023.118388