[1] Wang Y, Zeng H, Shi Y, Cao T, Cai N, Ye X, et al. Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner. Energy. 2016;109:117-23.
[2] Wu M, Hua J, Kumar K. An improved micro-combustor design for micro gas turbine engine and numerical analysis. Journal of Micromechanics and Microengineering. 2005;15(10):1817.
[3] Chou S, Yang W, Li J, Li Z. Porous media combustion for micro thermophotovoltaic system applications. Applied Energy. 2010;87(9):2862-7.
[4] Su S-S, Hwang S-J, Lai W-H. On a porous medium combustor for hydrogen flame stabilization and operation. International journal of hydrogen energy. 2014;39(36):21307-16.
[5] Pan J, Wu D, Liu Y, Zhang H, Tang A, Xue H. Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Applied Energy. 2015;160:802-7.
[6] Li J, Li Q, Shi J, Liu X, Guo Z. Numerical study on heat recirculation in a porous micro-combustor. Combustion and flame. 2016;171:152-61.
[7] Peng Q, Jiaqiang E, Chen J, Zuo W, Zhao X, Zhang Z. Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy conversion and management. 2018;155:276-86.
[8] Peng Q, Yang W, Jiaqiang E, Xu H, Li Z, Yu W, et al. Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications. Energy conversion and management. 2019;200:112086.
[9] Yang X, Zhao L, He Z, Dong S, Tan H. Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes. Applied Thermal Engineering. 2019;160:114110.
[10] Qian P, Liu M, Li X, Xie F, Huang Z, Luo C, et al. Combustion characteristics and radiation performance of premixed hydrogen/air combustion in a mesoscale divergent porous media combustor. International Journal of Hydrogen Energy. 2020;45(7):5002-13.
[11] Li Q, Zuo W, Zhang Y, Li J, He Z. Effects of rectangular rib on exergy efficiency of a hydrogen-fueled micro combustor. International Journal of Hydrogen Energy. 2020;45(16):10155-63.
[12] Ni S, Zhao D, Becker S, Tang A. Thermodynamics and entropy generation studies of a T-shaped micro-combustor: effects of porous medium and ring-shaped ribs. Applied Thermal Engineering. 2020;175:115374.
[13] He Z, Yan Y, Li X, Shen K, Li J, Zhang Z. Comparative investigation of combustion and thermal characteristics of a conventional micro combustor and micro combustor with internal straight/spiral fins for thermophotovoltaic system. International Journal of Hydrogen Energy. 2021;46(42):22165-79.
[14] Zuo W, Zhang Y, Li Q, Li J, He Z. Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications. Energy. 2021;223:120098.
[15] Pourali M, Esfahani JA, Fanaee SA, Bastiaans RJ, Kim KC. Effect of hydrogen addition on conjugate heat transfer in a planar micro-combustor with the detailed reaction mechanism: An analytical approach. international journal of hydrogen energy. 2020;45(30):15425-40.
[16] Peng Q, Yang W, Jiaqiang E, Li Z, Xu H, Fu G, et al. Investigation on H2/air combustion with C3H8 addition in the combustor with part/full porous medium. Energy Conversion and Management. 2021;228:113652.
[17] Li J, Chou S, Li Z, Yang W. Experimental investigation of porous media combustion in a planar micro-combustor. Fuel. 2010;89(3):708-15.
[18] Qian P, Liu M, Li X, Xie F, Huang Z, Luo C, et al. Effects of bluff-body on the thermal performance of micro thermophotovoltaic system based on porous media combustion. Applied Thermal Engineering. 2020;174:115281.
[19] Guessab A, Aris A, Bounif A. Simulation of turbulent piloted methane non-premixed flame based on combination of finite-rate/eddy-dissipation model. Mechanics. 2013;19(6):657-64.
[20] Fanaee SA, Abbaszadeh M. The thermal–fluid investigation of effects of different wall boundary conditions on platinum catalytic micro-channel combined with a thermoelectric system. Alexandria Engineering Journal. 2021;60(6):5675-85.
[21] Bidabadi M, Abedinejad M, Fereidooni J. Modeling of the propagation of a reaction front in fixed bed combustion of wood particles. Journal of Mechanics. 2011;27(3):453-9.
[22] Bazdidi-Tehrani F, Sharifi-Sedeh E, Abedinejad MS. Effects of alumina nanoparticles on evaporation and combustion characteristics of diesel fuel droplets. Journal of the Taiwan Institute of Chemical Engineers. 2023;143:104713.
[23] Bazdidi-Tehrani F, Yazdani Ahmadabadi H, Abedinejad MS. Analysis of Influence of Variable Airflow Distribution on Reactive Flow in a Gas Turbine Model Combustion Chamber. Fuel and Combustion. 2015;8(2):13-32.
[24] Bazdidi Tehrani F, Sharifi Sade E, Abedinejad MS. Analysis of Influence of Alumina Nanoparticles Addition on Diesel Fuel Droplets Evaporation in A Model Gas Turbine Combustion Chamber. Fluid Mechanics & Aerodynamics Journal. 2021;9(2):101-11.
[25] Mohammadi M, Abedinejad MS. Analysis of NO Formation and Entropy Generation in a Reactive Flow. Aerospace. 2022;9(11):666.
[26] Bazdidi-Tehrani F, Abedinejad MS, Yazdani-Ahmadabadi H. Influence of Variable Air Distribution on Pollutant Emissions in a Model Wall Jet Can Combustor. Heat Transfer Research. 2018;49(17).
[27] Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & fluids. 1995;24(3):227-38.
[28] Sazhin S, Sazhina E, Faltsi-Saravelou O, Wild P. The P-1 model for thermal radiation transfer: advantages and limitations. Fuel. 1996;75(3):289-94.
[29] Li J, Chou S, Li Z, Yang W. Characterization of wall temperature and radiation power through cylindrical dump micro-combustors. Combustion and Flame. 2009;156(8):1587-93.
[30] Weinberg F. Combustion temperatures: the future? Nature. 1971;233(5317):239-41.
[31] Wu Y, Peng Q, Yang M, Shan J, Yang W. Entropy generation analysis of premixed hydrogen–air combustion in a micro combustor with porous medium. Chemical Engineering and Processing-Process Intensification. 2021;168:108566.