بررسی عددی تاثیرات جنس، ضخامت دیواره، تخلخل یک و دو ناحیه‌ای در یک محفظه احتراق برای کاربرد در سیستم‌های ترموفتوولتائیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه الزهرا، تهران، ایران

2 گروه آموزشی مهندسی مکانیک، دانشکده مهندسی، دانشگاه الزهرا، تهران، ایران

3 گروه آموزشی مهندسی مکانیک، دانشکده مهندسی مکانیک،د انشگاه علم و صنعت ایران، تهران، ایران

چکیده

عملکرد محفظه‌های احتراق در سیستم‌های ترموفتوولتائیک به عواملی نظیر جنس محفظه، ضخامت دیواره و حضور محیط متخلخل در محفظه وابسته است که در این پژوهش مورد بررسی قرار گرفته است. به منظور شبیه سازی عددی محفظه از مدل‌های realizable  و اضمحلال گردابه- نرخ واکنش محدود به ترتیب برای مدل‌سازی آشفتگی جریان و احتراق گاز هیدروژن استفاده شده است. سه ضخامت دیواره مختلف در سرعت‌های m/s2 و3 مورد بررسی قرار گرفته است. نتایج نشان می‌دهد کاهش ضخامت دیواره سبب افزایش دمای دیواره خارجی و بازده تابشی محفظه می‌گردد. بیشینه دما در سرعت m/s2 و در ضخامت mm2/0 نسبت‌به ضخامت‌های mm5/0 و mm8/0 به میزان  111 و  141 و در سرعت m/s3 به میزان   79 و  107 افزایش می‌یابد. همچنین محفظه احتراق با سه جنس مختلف دیواره  و SiC و Stainless Steel (SS316) شبیه‌سازی گردیده است. در حالتی که دیواره از جنس  باشد، بازده بیشتری حاصل می‌گردد. در بخشی دیگر حضور دو ناحیه متخلخل در محفظه منجر به تغییر محل تشکیل شعله گردیده است. بازده تابشی در محفظه با حضور دو ناحیه متخلخل نسبت به محفظه تک‌ناحیه متخلخل در نسبت‌های هم‌ارزی 6/0، 8/0 و 1 به ترتیب به میزان %24، %27 و %28 افزایش می‌یابد.




 

کلیدواژه‌ها


عنوان مقاله [English]

Numerical investigation of the effects of material, wall thickness, one and two zones porousity in a thermo-photovoltaic combustion chamber

نویسندگان [English]

  • Mohammad Sadegh Abedinejad 1
  • Samaneh Daliri, 2
  • Alireza Teymoori, 3
1 Department of Mechanical Engineering, Faculty of Engineering & Technology, Alzahra University, Tehran, Iran
2 Department of Mechanical Engineering, Faculty of Engineering, Alzahra University, Tehran ,Iran
3 School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

The performance of combustion chambers for use in thermo-photovoltaic systems depends on some factors such as the material of chamber, wall thickness, and the presence of porous medium in the combustion chamber, which has been investigated in this research. In order to simulate a numerical model, the realizable k-ε and the finite rate- eddy dissipation models have been used to model flow turbulence and hydrogen gas combustion, respectively. Three different wall thicknesses at constant equivalence ratio of 0.8 and velocities of 2 m/s and 3 m/s have been studied. The results show that decreasing the wall thickness increases the temperature of the outer wall and the radiation efficiency of the chamber. The maximum temperature increases by 111 and 141 °C at the velocity of 2 m/s and at the thickness of 0.2 mm as compared to the thicknesses of 0.5 mm and 0.8 mm and by 79 and 107 °C at the velocity of 3 m/s. Also, the combustion chamber has been simulated with three different materials of walls, Al2O3, SiC and Stainless Steel(SS316). The results show that when the wall is made of Al2O3, the efficiency is higher. In another part of this research, the presence of two porous zones in the chamber has led to a change in the place of flame formation. The radiation efficiency in the combustion chamber with the presence of two porous regions increases by 24%, 27%, and 28%, respectively, in the equivalence ratios of 0.6, 0.8, and 1.

کلیدواژه‌ها [English]

  • Thermo
  • photovoltaic combustion chamber Porous Hydrogen Wall material Numerical simulation Two porous zones
[1] Wang Y, Zeng H, Shi Y, Cao T, Cai N, Ye X, et al. Power and heat co-generation by micro-tubular flame fuel cell on a porous media burner. Energy. 2016;109:117-23.
[2] Wu M, Hua J, Kumar K. An improved micro-combustor design for micro gas turbine engine and numerical analysis. Journal of Micromechanics and Microengineering. 2005;15(10):1817.
[3] Chou S, Yang W, Li J, Li Z. Porous media combustion for micro thermophotovoltaic system applications. Applied Energy. 2010;87(9):2862-7.
[4] Su S-S, Hwang S-J, Lai W-H. On a porous medium combustor for hydrogen flame stabilization and operation. International journal of hydrogen energy. 2014;39(36):21307-16.
[5] Pan J, Wu D, Liu Y, Zhang H, Tang A, Xue H. Hydrogen/oxygen premixed combustion characteristics in micro porous media combustor. Applied Energy. 2015;160:802-7.
[6] Li J, Li Q, Shi J, Liu X, Guo Z. Numerical study on heat recirculation in a porous micro-combustor. Combustion and flame. 2016;171:152-61.
[7] Peng Q, Jiaqiang E, Chen J, Zuo W, Zhao X, Zhang Z. Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor. Energy conversion and management. 2018;155:276-86.
[8] Peng Q, Yang W, Jiaqiang E, Xu H, Li Z, Yu W, et al. Experimental investigation on premixed hydrogen/air combustion in varied size combustors inserted with porous medium for thermophotovoltaic system applications. Energy conversion and management. 2019;200:112086.
[9] Yang X, Zhao L, He Z, Dong S, Tan H. Comparative study of combustion and thermal performance in a swirling micro combustor under premixed and non-premixed modes. Applied Thermal Engineering. 2019;160:114110.
[10] Qian P, Liu M, Li X, Xie F, Huang Z, Luo C, et al. Combustion characteristics and radiation performance of premixed hydrogen/air combustion in a mesoscale divergent porous media combustor. International Journal of Hydrogen Energy. 2020;45(7):5002-13.
[11] Li Q, Zuo W, Zhang Y, Li J, He Z. Effects of rectangular rib on exergy efficiency of a hydrogen-fueled micro combustor. International Journal of Hydrogen Energy. 2020;45(16):10155-63.
[12] Ni S, Zhao D, Becker S, Tang A. Thermodynamics and entropy generation studies of a T-shaped micro-combustor: effects of porous medium and ring-shaped ribs. Applied Thermal Engineering. 2020;175:115374.
[13] He Z, Yan Y, Li X, Shen K, Li J, Zhang Z. Comparative investigation of combustion and thermal characteristics of a conventional micro combustor and micro combustor with internal straight/spiral fins for thermophotovoltaic system. International Journal of Hydrogen Energy. 2021;46(42):22165-79.
[14] Zuo W, Zhang Y, Li Q, Li J, He Z. Numerical investigations on hydrogen-fueled micro-cylindrical combustors with cavity for micro-thermophotovoltaic applications. Energy. 2021;223:120098.
[15] Pourali M, Esfahani JA, Fanaee SA, Bastiaans RJ, Kim KC. Effect of hydrogen addition on conjugate heat transfer in a planar micro-combustor with the detailed reaction mechanism: An analytical approach. international journal of hydrogen energy. 2020;45(30):15425-40.
[16] Peng Q, Yang W, Jiaqiang E, Li Z, Xu H, Fu G, et al. Investigation on H2/air combustion with C3H8 addition in the combustor with part/full porous medium. Energy Conversion and Management. 2021;228:113652.
[17] Li J, Chou S, Li Z, Yang W. Experimental investigation of porous media combustion in a planar micro-combustor. Fuel. 2010;89(3):708-15.
[18] Qian P, Liu M, Li X, Xie F, Huang Z, Luo C, et al. Effects of bluff-body on the thermal performance of micro thermophotovoltaic system based on porous media combustion. Applied Thermal Engineering. 2020;174:115281.
[19] Guessab A, Aris A, Bounif A. Simulation of turbulent piloted methane non-premixed flame based on combination of finite-rate/eddy-dissipation model. Mechanics. 2013;19(6):657-64.
[20] Fanaee SA, Abbaszadeh M. The thermal–fluid investigation of effects of different wall boundary conditions on platinum catalytic micro-channel combined with a thermoelectric system. Alexandria Engineering Journal. 2021;60(6):5675-85.
[21] Bidabadi M, Abedinejad M, Fereidooni J. Modeling of the propagation of a reaction front in fixed bed combustion of wood particles. Journal of Mechanics. 2011;27(3):453-9.
[22] Bazdidi-Tehrani F, Sharifi-Sedeh E, Abedinejad MS. Effects of alumina nanoparticles on evaporation and combustion characteristics of diesel fuel droplets. Journal of the Taiwan Institute of Chemical Engineers. 2023;143:104713.
[23] Bazdidi-Tehrani F, Yazdani Ahmadabadi H, Abedinejad MS. Analysis of Influence of Variable Airflow Distribution on Reactive Flow in a Gas Turbine Model Combustion Chamber. Fuel and Combustion. 2015;8(2):13-32.
[24] Bazdidi Tehrani F, Sharifi Sade E, Abedinejad MS. Analysis of Influence of Alumina Nanoparticles Addition on Diesel Fuel Droplets Evaporation in A Model Gas Turbine Combustion Chamber. Fluid Mechanics & Aerodynamics Journal. 2021;9(2):101-11.
[25] Mohammadi M, Abedinejad MS. Analysis of NO Formation and Entropy Generation in a Reactive Flow. Aerospace. 2022;9(11):666.
[26] Bazdidi-Tehrani F, Abedinejad MS, Yazdani-Ahmadabadi H. Influence of Variable Air Distribution on Pollutant Emissions in a Model Wall Jet Can Combustor. Heat Transfer Research. 2018;49(17).
[27] Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & fluids. 1995;24(3):227-38.
[28] Sazhin S, Sazhina E, Faltsi-Saravelou O, Wild P. The P-1 model for thermal radiation transfer: advantages and limitations. Fuel. 1996;75(3):289-94.
[29] Li J, Chou S, Li Z, Yang W. Characterization of wall temperature and radiation power through cylindrical dump micro-combustors. Combustion and Flame. 2009;156(8):1587-93.
[30] Weinberg F. Combustion temperatures: the future? Nature. 1971;233(5317):239-41.
[31] Wu Y, Peng Q, Yang M, Shan J, Yang W. Entropy generation analysis of premixed hydrogen–air combustion in a micro combustor with porous medium. Chemical Engineering and Processing-Process Intensification. 2021;168:108566.
دوره 13، شماره 1 - شماره پیاپی 33
بهار و تابستان 1403
مرداد 1403
  • تاریخ دریافت: 28 شهریور 1403
  • تاریخ پذیرش: 28 شهریور 1403
  • تاریخ انتشار: 01 مرداد 1403