مطالعه عددی تأثیر میدان مغناطیسی بر بازده اگزرژی در کلکتور خورشیدی پارابولیک مجهز به توربولاتورهای ترکیبی پرشده با نانوسیال هیبریدی مغناطیسی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار،دانشکده مهندسی مکانیک، واحد الیگودرز، دانشگاه آزاد اسلامی، الیگودرز، ایران

2 کارشناس ارشد، گروه مکانیک، واحد الیگودرز، دانشگاه آزاد اسلامی، الیگودرز، ایران

3 استاد، دانشکده مهندسی مکانیک، دانشگاه امام حسین (ع)، تهران، ایران

چکیده

این مطالعه برای بررسی اثر میدان مغناطیسی در اعداد هارتمن 50 تا 200 در کلکتور خورشیدی پارابولیک در کسر حجمی صفر تا 25/2 درصد از نانوسیال هیبریدی مغناطیسی با سه نانوذره اکسید آهن، نانولوله کربنی چند جداره و مس در محدوده رینولدز 18000 تا 42000 انجام شده است. در قسمت عددی یک کلکتور خورشیدی پارابولیک با استفاده از روش حجم محدود مورد شبیه‌سازی قرار گرفته و از خواص ترموفیزیکی نانوسیال هیبریدی مغناطیسی به‌عنوان سیال کاری در آن استفاده شده است. لوله جاذب کلکتور خورشیدی موردمطالعه مجهز به سه شکل هندسی مختلف از توربو لاتور می‌باشد. نانوسیال هیبریدی آب/نانولوله کربنی چند جداره - اکسید آهن - مس با درنظرگرفتن مدل دوفازی شبیه‌سازی گردیده است. مطابق نتایج عددی، حداکثر بازده اگزرژی مربوط به لوله جاذب مجهز به ترکیب توربو لاتور و سیم دایره‌ای‌شکل می‌باشد. همچنین، حداکثر بازده اگزرژی مربوط به عدد رینولدز 18000 در عدد هارتمن 200 می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Study of the Magnetic Field Effect on the Exergy Efficiency in a Parabolic Solar Collector Equipped with Combined Turbulators Filled with Hybrid Magnetic Nano-Fluid

نویسندگان [English]

  • Shahrouz Yousefzadeh 1
  • Gholamhossein Ghanbari 2
  • Mohammad Mehdi Dostdar 3
1 Assistant Professor, Faculty of Mechanical Engineering, Aliguderz Branch, Islamic Azad University, Aliguderz, Iran
2 Master's degree, Department of Mechanics, Aliguderz Branch, Islamic Azad University, Aliguderz, Iran
3 Professor, Faculty of Mechanical Engineering, Imam Hossein University (AS), Tehran, Iran
چکیده [English]

This study was conducted to investigate the effect of magnetic field on Hartmann numbers ranging from 50 to 200 in a parabolic solar collector with zero to 2.25 percent volume fraction of magnetic hybrid nanofluid containing three nanoparticles of iron oxide, multi-walled carbon nanotubes, and copper in the Reynolds number range of 18000 to 42000. In the numerical study, a parabolic solar collector was simulated using the finite volume method, and the thermophysical properties of the magnetic hybrid nanofluid were used as the working fluid in it. The solar collector absorber tube under study is equipped with three different geometric shapes of turbulators. A hybrid nanofluid of water/carbon nanotube multi-wall-iron oxide-copper has been considered for two-phase simulation. According to numerical results, the maximum exergy efficiency is related to the absorber tube equipped with a combination of turbulator and circular wire. Additionally, the maximum exergy efficiency is related to a Reynolds number of 18000 at a Hartmann number of 200.

کلیدواژه‌ها [English]

  • Exergy
  • Turbulent flow
  • Solar collector
  • Magnetic field
  • Combined turbulators

Smiley face

 

Khalili, Z., Sheikholeslami, M., “Numerical modeling for efficiency of solar cell module combined with TEG involving Fe3O4-water nanofluid utilizing MHD”, Journal of Magnetism and Magnetic Materials, Vol. 580, pp. 170950, 2023, DOI 10.1016/j.jmmm.2023.170950
[2] Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., Kim, K.H., “Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews”, Vol .82, pp. 894-900, 2018, DOI 10.1016/j.rser.2017.09.094.
[3] SolarGis S.R.O, Slovakia, available at: http://solargis.com/products/maps-and-gis-data/free/download, Visited date: January 19, 2019.
[4] Duffie J.A., Beckman W.A., “Solar Engineering of Thermal Processes”, John Wiley & Sons, New York, 2006.
[5] Sommers, A.D., Yerkes, K.L. “Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid", J Nanopart Res, 12, pp. 1003–1014, 2010, DOI 10.1007/s11051-009-9657-3.
[6] Wongcharee, K., Eiamsa-ard, S., “Heat transfer enhancement by twisted tapes with alternate-axes and triangular, rectangular and trapezoidal wings, Chemical Engineering and Processing”: Process Intensification, Vol. 50, pp. 211-219, 2011, DOI 10.1016/j.cep.2010.11.012.
[7] Mohammed, H.A., -Shamani, A.N. Al, Sheriff, J.M., “Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib–groove channel”, International Communications in Heat and Mass Transfer, Vol. 39, pp. 1584-1594, 2012, DOI 10.1016/j.icheatmasstransfer.2012.10.020.
[8] Manca, O., Nardini, S., Ricci, D., ”Enhancement of Forced Convection in Ribbed Channels by Nanofluids”, International Mechanical Engineering Congress and Exposition, Vol. 121, pp. 695-703, 2013, DOI 10.1115/IMECE2012-88892.
[9] Waghole, D. R., Warkhedkar, R.M., Kulkarni, V.S., Shrivastva, R.K., Experimental Investigations on Heat Transfer and Friction Factor of Silver Nanofliud in Absorber/Receiver of Parabolic Trough Collector with Twisted Tape Inserts, Energy Procedia, Vol. 45, pp.558-567, 2014, DOI 10.1016/j.egypro.2014.01.060.
[10] Akhavan-Behabadi, M.A., Shahidi, M., Aligoodarz, M.R., ”An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube”, International Communications in Heat and Mass Transfer, Vol. 63, pp. 62-72, 2015, DOI 10.1016/j.icheatmasstransfer.2015.02.013.
[11] Amirahmadi, S., Rashidi, S., Abolfazli Esfahani, J., ”Minimization of exergy losses in a trapezoidal duct with turbulator, roughness and beveled corners”, Applied Thermal Engineering, Vol. 107, pp. 533-543, 2016, DOI 10.1016/j.applthermaleng.2016.06.182.
[12] Mashoofi, N., Pesteei, S.M., Moosavi, A., Sadighi Dizaji, H., ”Fabrication method and thermal-frictional behavior of a tube-in-tube helically coiled heat exchanger which contains turbulator”, Applied Thermal Engineering, Vol. 111, pp. 1008-1015, 2017, DOI 10.1016/j.applthermaleng.2016.09.163.
[13] Bhuiya, M.M.K., Chowdhury, M.S.U., Shahabuddin, M., Saha M., Memon, L.A., ”Thermal characteristics in a heat exchanger tube fitted with triple twisted tape inserts”, International Communications in Heat and Mass Transfer, Vol. 48, pp. 124-132, 2018, DOI 10.1016/j.icheatmasstransfer.2013.08.024.
[14] Raquel de Oliveira, L., Ferreira Lima Ribeiro, S.R., Miranda Reis, M.H., Luiz Cardoso, V., Bandarra Filho, E.P., ”Diamond and Related Materials”, Vol. 96, pp. 216-230, 2019, DOI 10.1016/j.diamond.2019.05.004.
[15] Anish, M., Jayaprabakar, J., Jayaprakash, V., Prabhu, A., Bhuvanesh Ram, V., Austin Jijo, M., ”Measurement dependent temperature of thermal conductivity and viscosity by using Al2O3 – Therminol 55 based nanofluid”, Materials Today, Vol. 21, pp. 332-334, 2020, DOI 10.1016/j.matpr.2019.05.457.
[16] S. Kassim, A. Salah Fouad, O. Samarmad, Ahmed, ”Experimental and Numerical Study of Enhancement Heat Transfer Coefficient of TiO2/Water Nanofluid in Spiral Fluted Tube Equipped with Twisted Tape”, Nanoscience & Nanotechnology-Asia, Vol. 7, pp.1432-1456, 2021, DOI 10.2174/2210681206666161021105504.
[17] Shaker, B., Gholinia, M., Pourfallah, M., Ganji, D.D., ”CFD analysis of Al2O3-syltherm oil Nanofluid on parabolic trough solar collector with a new flange-shaped turbulator model”, Theoretical and Applied Mechanics Letters, Vol. 12, pp. 100323, 2022, DOI 10.1016/j.taml.2022.100323.
[18] Abdalla, A.N., Shahsavar, A., ”Numerical investigation of the effect of rotary propeller type turbulator on the energy and exergy efficiencies of a concentrating photovoltaic/thermal hybrid collector”, Journal of Cleaner Production, Vol. 393, pp. 136225, 2023, DOI 10.1016/j.jclepro.2023.136225.
[19] Jie, Z., Binti Muhamad, S., Abed, A.M., Deifalla, A., Ghoushchi, S.P., Rusni, I.M., ”Hydrothermal parameters enhancement of a DTHEX with simultaneous V-cut twisted tape turbulator and air/CuO-water flow usage”, Case Studies in Thermal Engineering, Vol. 45, pp. 102989, 2023, DOI 10.1016/j.csite.2023.102898.
[20] Ghanbari, G., Marzban A., & Yousefzadeh S., Improving the thermal effciency of parabolic trough collector equipped with combined turbulator containing two-phase magnetic hybrid nanofluid, Engineering Analysis with Boundary Elements, Vol. 155, pp. 565–583, 2023, DOI 10.1016/j.enganabound.2023.06.022.
[21] Abasi Varzaneh, A.R., Toghraie, D., Karimipour, A., “Comprehensive simulation of nanofluid flow and heat transfer in straight ribbed microtube using single-phase and two-phase models for choosing the best conditions”, Journal of Thermal Analysis and Calorimetry volume, Vol. 139, pp. 701-720, 2020, DOI 10.1007/s10973-019-08381-8.
[22] Jafaryar, M., Sheikholeslami, M., “Efficacy of turbulator on performance of parabolic solar collector with using hybrid nanomaterial applying numerical method”, Renewable Energy, Vol. 198, pp. 534-548, 2022, DOI 10.1016/j.renene.2022.08.037.
[23] Aminfar, H., Mohammadpourfard, M., Mohseni, F., “Two-phase mixture model simulation of the hydro-thermal behavior of an electrically conductive ferrofluid in the presence of magnetic fields”, Journal of Magnetism and Magnetic Materials, Vol. 324, pp.830-842, 2012, DOI 10.1016/j.jmmm.2011.09.028.
[24] Xiong, Q., Jafaryar, M., Divsalar, A., Sheikholeslami, M., Shafee, A., Dat, D., Vo, M. Khan, H., Tlili, I., Lijk, Z., “Macroscopic simulation of nanofluid turbulent flow due to compound turbulator in a pipe”, Chemical Physics, Vol. 527, pp. 110-475, 2019, DOI 10.1016/j.chemphys.2019.110475.
[25] Dawar, A., Shah, Z., Islam, S., Deebani, W., Shutaywi, M., MHD stagnation point flow of a water-based copper nanofluid past a flat plate with solar radiation effect, Journal of Petroleum Science and Engineering, Vol. 220, pp. 111148, 2023, DOI 10.1016/j.petrol.2022.111148.
[26] Khalili, Z., Sheikholeslami, M.,”Numerical modeling for efficiency of solar cell module combined with TEG involving Fe3O4-water nanofluid utilizing MHD”, Journal of Magnetism and Magnetic Materials, Vol. 580, pp. 170950, 2023, DOI 10.1016/j.jmmm.2023.170950.
[27] Cianfrini, M., Corcione, M., Quintino, A., “Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders”, Applied Thermal Engineering, Vol. 31, pp 17–18, pp. 4055-4063, 2011, DOI 10.1016/j.applthermaleng.2011.08.010.
[28] Kumar, A., Singh, S., Chamoli, S., Kumar, M., “Experimental investigation on thermo-hydraulic performance of heat exchanger Tube with solid and perforated circular disk along with twisted tape Insert”, Heat Transfer Engineering, Vol. 40, pp. 616-626, 2019, DOI 10.1080/01457632.2018.1436618.
[29] ANSYS® Academic Research, Release 18.1, ANSYS FLUENT, Theory Guide, ANSYS, Inc
دوره 13، شماره 1 - شماره پیاپی 33
بهار و تابستان 1403
مرداد 1403
صفحه 31-42
  • تاریخ دریافت: 18 اردیبهشت 1403
  • تاریخ بازنگری: 29 خرداد 1403
  • تاریخ پذیرش: 16 تیر 1403
  • تاریخ انتشار: 01 مرداد 1403