ارزیابی اگزرژواکونومیک به کارگیری یک چرخه ترکیبی فلش آلی دو گانه با بازیاب و رنکین آلی در یک سیکل تولید توان زمین گرمایی

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشگاه آیت ا... بروجردی ، بروجرد، ایران

چکیده

در پژوهش حاضر، یک چرخه فلش آلی دوگانه برای استفاده از انرژی های اتلافی یک سیکل زمین گرمایی مورد استفاده قرار گرفته است. همچنین به منظور بازیافت بهتر انرژی، یک سیکل رنکین آلی از انرژی های اتلافی سیکل فلش دوگانه به منظور تولید توان استفاده ‌می‌کند. معادلات انرژی، اگزرژی و اگزرژواکونومیک برای تک تک اجزا سیکل مورد بررسی قرار گرفته است. نتایج مدلسازی نشان می‌دهد که مقدار توان خالص تولیدی سیکل‌های زمین گرمایی، فلش دوگانه و رنکین آلی به ترتیب برابر با 37/159 ، 5/333 و 2/12 کیلووات می‌باشد. همچنین کندانسورها و مبدل های حرارتی بیشترین سهم در اتلاف اگزرژی کل سیستم را دارند. نتایج تحلیل اقتصادی نشان می‌دهند که کندانسورها در سیستم پیشنهادی کمترین فاکتور اگزرژواکونومیک را دارند و بنابراین ضروریست در طراحی بیشتر مورد توجه قرار گیرند. همچنین فاکتور اگزرژواکونومیک کلی سیستم 96/34 % ‌است. نتایج بررسی پارامتری نشان می‌دهند که با افزایش فشار ورودی توربین زمین گرمایی و فشار خروجی توربین اول سیکل فلش دوگانه، توان کلی سیستم افزایش و هزینه های کلی سیستم کاهش می‌‌یابد. در مقابل افزایش فشار خروجی توربین زمین گرمایی موجب کاهش توان کلی و هزینه های کلی سیکل می‌‌گردد. همچنین با افزایش فشار ماکزیمم سیکل فلش دوگانه، توان کلی سیستم ابتدا افزایش و سپس کاهش می‌‌یابد و هزینه های کلی روندی معکوس با توان تولیدی را نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Exergoeconomic assessment of employing a regenerative dual organic flash cycle with an ORC in a geothermal power plant

نویسنده [English]

  • Armin Emamifar
Assistant Professor, Ayat A... Borujerdi University, Borujerd, Iran
چکیده [English]

In the present research, a dual flash cycle is employed to use the waste energy of a geothermal cycle. In order to better recover the energy, the waste energy of the dual flash cycle is used to operate an ORC to generate more power. Energy, exergy and exergoeconomic equations for each component of the system are analyzed. The results show that the net power of the geothermal cycle, dual flash cycle and ORC are 159.37 kW, 333.5 kW and 52.2 kW, respectively. Moreover, the condensers and the heat exchangers have the most exergy destruction rates. Furthermore, the condensers have the lowest exergoeconomic factor compared to other system components. The total exrgoeconomic factor of the system is 34.96 %. The parametric analysis indicates that by increasing the input pressure of the geothermal turbine and the output pressure of the first double flash cycle turbine, the total power of the system increases and the total costs of the system decrease. However, increasing the output pressure of the geothermal turbine reduces the overall power and costs of the cycle. Moreover, With the increase of the maximum pressure of the double flash cycle, the total power of the system first increases and then decreases, and the total costs show an inverse trend with the production power.

کلیدواژه‌ها [English]

  • Flash Cycle
  • Exergoeconomic Analysis
  • Geothermal Energy
  • ORC
  • Energy Recovery

Smiley face

 

[1] Fallah M, Mahmoudi SMS, Yari M, Akbarpour Ghiasi R. Advanced exergy analysis of the Kalina cycle applied for low temperature enhanced geothermal system. Energy Conversion and Management. 2016;108:190-201.
[2] Guo X, Zhang H, Zhao J, Wang F, Wang J, Miao H, et al. Performance evaluation of an integrated high-temperature proton exchange membrane fuel cell and absorption cycle system for power and heating/cooling cogeneration. Energy Conversion and Management. 2019;181:292-301.
[3] Zhar R, Allouhi A, Jamil A, Lahrech K. A comparative study and sensitivity analysis of different ORC configurations for waste heat recovery. Case Studies in Thermal Engineering. 2021;28:101608.
[4] Basaran A, Ozgener L. Investigation of the effect of different refrigerants on performances of binary geothermal power plants. Energy Conversion and Management. 2013;76:483-98.
[5] Domra Kana J, Djongyang N, Danwe R, Njandjock Nouck P, Abdouramani D. A review of geophysical methods for geothermal exploration. Renewable and Sustainable Energy Reviews. 2015;44:87-95.
[6] Moya D, Aldás C, Kaparaju P. Geothermal energy: Power plant technology and direct heat applications. Renewable and Sustainable Energy Reviews. 2018;94:889-901.
[7] Wu C, Xu X, Li Q, Li X, Liu L, Liu C. Performance assessment and optimization of a novel geothermal combined cooling and power system integrating an organic flash cycle with an ammonia-water absorption refrigeration cycle. Energy Conversion and Management. 2021;227:113562.
[8] Hernández Martínez E, Avitia Carlos MCP, Cisneros Solís JI, Prieto Avalos MCMdC. Thermodynamic simulation and mathematical model for single and double flash cycles of Cerro Prieto geothermal power plants. Geothermics. 2020;83:101713.
[9] Mohammadzadeh Bina S, Jalilinasrabady S, Fujii H. Exergoeconomic analysis and optimization of single and double flash cycles for Sabalan geothermal power plant. Geothermics. 2018;72:74-82.
[10] Chagnon-Lessard N, Mathieu-Potvin F, Gosselin L. Optimal design of geothermal power plants: A comparison of single-pressure and dual-pressure organic Rankine cycles. Geothermics. 2020;86:101787.
[11] Ganjehsarabi H. Mixed refrigerant as working fluid in Organic Rankine Cycle for hydrogen production driven by geothermal energy. International Journal of Hydrogen Energy. 2019;44(34):18703-11.
[12] Moloney F, Almatrafi E, Goswami DY. Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures. Renewable Energy. 2020;147:2874-81.
[13] Ge YT, Li L, Luo X, Tassou SA. Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles. Applied Energy. 2018;227:220-30.
[14] Han J, Wang X, Xu J, Yi N, Ashraf Talesh SS. Thermodynamic analysis and optimization of an innovative geothermal-based organic Rankine cycle using zeotropic mixtures for power and hydrogen production. International Journal of Hydrogen Energy. 2020;45(15):8282-99.
[15] Samadi F, Kazemi N. Exergoeconomic analysis of zeotropic mixture on the new proposed organic Rankine cycle for energy production from geothermal resources. Renewable Energy. 2020;152:1250-65.
[16] Wang J, Wang J, Dai Y, Zhao P. Assessment of off-design performance of a Kalina cycle driven by low-grade heat source. Energy. 2017;138:459-72.
[17] Xu W, Deng S, Zhao L, Zhao D, Chen R. Identification of key affecting parameters of zeotropic working fluid on subcritical organic Rankine cycle according limiting thermodynamic cycle. Energy Conversion and Management. 2019;197:111884.
[18] Zhou Y, Li S, Sun L, Zhao S, Ashraf Talesh SS. Optimization and thermodynamic performance analysis of a power generation system based on geothermal flash and dual-pressure evaporation organic Rankine cycles using zeotropic mixtures. Energy. 2020;194:116785.
[19] Guo T, Wang HX, Zhang SJ. Selection of working fluids for a novel low-temperature geothermally-powered ORC based cogeneration system. Energy Conversion and Management. 2011;52(6):2384-91.
[20] Jalilinasrabady S, Itoi R, Valdimarsson P, Saevarsdottir G, Fujii H. Flash cycle optimization of Sabalan geothermal power plant employing exergy concept. Geothermics. 2012;43:75-82.
[21] Dagdas A. Performance Analysis and Optimization of Double-Flash Geothermal Power Plants. Journal of Energy Resources Technology. 2006;129(2):125-33.
[22] Yari M. Exergetic analysis of various types of geothermal power plants. Renewable Energy. 2010;35(1):112-21.
[23] Luo C, Huang L, Gong Y, Ma W. Thermodynamic comparison of different types of geothermal power plant systems and case studies in China. Renewable Energy. 2012;48:155-60.
[24] Ho T, Mao SS, Greif R. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy. Energy. 2012;42(1):213-23.
[25] Ganapathiraju V, Srinivas T. Comparative study on steam flash, organic flash and Kalina for enhanced power generation from waste heat recovery. Journal of Power Technologies. 2016;96:81-91.
[26] Mondal S, De S. Power by waste heat recovery from low temperature industrial flue gas by Organic Flash Cycle (OFC) and transcritical-CO2 power cycle: A comparative study through combined thermodynamic and economic analysis. Energy. 2017;121:832-40.
[27] Mohammadi Hadelu L, Ahmadi Boyaghchi F. Exergoeconomic and exergoenvironmental analyses and optimization of different ejector based two stage expander-organic flash cycles fuelled by solar energy. Energy Conversion and Management. 2020;216:112943.
[28] Baccioli A, Antonelli M. Organic Flash Cycles: Off-design behavior and control strategies of two different cycle architectures for Waste Heat Recovery applications. Energy Conversion and Management. 2018;157:176-85.
[29] Baccioli A, Antonelli M, Desideri U. Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery. Applied Energy. 2017;199:69-87.
[30] Bonolo de Campos G, Bringhenti C, Traverso A, Takachi Tomita J. Thermoeconomic comparison between the organic flash cycle and the novel organic Rankine flash cycle (ORFC). Energy Conversion and Management. 2020;215:112926.
[31] Mosaffa AH, Zareei A. Proposal and thermoeconomic analysis of geothermal flash binary power plants utilizing different types of organic flash cycle. Geothermics. 2018;72:47-63.
[32] Zhang W, Chen F, Shen H, Cai J, Liu Y, Zhang J, et al. Design and analysis of an innovative biomass-powered cogeneration system based on organic flash and supercritical carbon dioxide cycles. Alexandria Engineering Journal. 2023;80:623-47.
[33] Mehdikhani V, Mirzaee I, Khalilian M, Abdolalipouradl M. Thermodynamic and exergoeconomic assessment of a new combined power, natural gas, and hydrogen system based on two geothermal wells. Applied Thermal Engineering. 2022;206:118116.
[34] Shakibi H, Nedaei N, Farajollahi AH, Chitsaz A. Exergoeconomic appraisement, sensitivity analysis, and multi-objective optimization of a solar-driven generation plant for yielding electricity and cooling load. Process Safety and Environmental Protection. 2023;170:89-111.
[35] Hai T, El-Shafay AS, Alizadeh Aa, Singh Chauhan B, Fahad Almojil S, Ibrahim Almohana A, et al. Combination of a geothermal-driven double-flash cycle and a Kalina cycle to devise a polygeneration system: Environmental assessment and optimization. Applied Thermal Engineering. 2023;228:120437.
[36] Farajollahi A, Rostami M, Feili M, Ghaebi H, Salimi MR. Modified cost analysis integrated with dual parametric sensitivity study for realistic cost assessment of a novel modified geothermal-based multi-generation energy system. Energy Reports. 2022;8:13463-83.
[37] Ambriz-Díaz VM, Rosas IY, Chávez O, Rubio-Maya C. 4E Assessment of an Organic Rankine Cycle (ORC) Activated with Waste Heat of a Flash–Binary Geothermal Power Plant. Entropy [Internet]. 2022; 24(12).
[38] Farajollahi A, Rostami M, Feili M, Ghaebi H. Thermodynamic and economic evaluation and optimization of the applicability of integrating an innovative multi-heat recovery with a dual-flash binary geothermal power plant. Clean Technologies and Environmental Policy. 2023;25(5):1673-98.
[39] Nemati A, Nami H, Yari M. Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies. Renewable Energy. 2018;115:1231-48.
[40] Kianfard H, Khalilarya S, Jafarmadar S. Exergy and exergoeconomic evaluation of hydrogen and distilled water production via combination of PEM electrolyzer, RO desalination unit and geothermal driven dual fluid ORC. Energy Conversion and Management. 2018;177:339-49.
[41] Mosaffa AH, Hasani Mokarram N, Garousi Farshi L. Thermoeconomic analysis of a new combination of ammonia/water power generation cycle with GT-MHR cycle and LNG cryogenic exergy. Applied Thermal Engineering. 2017;124:1343-53.
[42] Yosaf S, Ozcan H. Exergoeconomic investigation of flue gas driven ejector absorption power system integrated with PEM electrolyser for hydrogen generation. Energy. 2018;163:88-99.
[43] Wang J, Wang J, Dai Y, Zhao P. Thermodynamic analysis and optimization of a flash-binary geothermal power generation system. Geothermics. 2015;55:69-77.