[1] G. Xu et al., “Portal vein pressure estimation and portal hypertension discrimination based on subharmonic scattering of ultrasound contrast agent microbubbles,” IEEE Trans. Biomed. Eng., 2023.
[2] H.-G. Knoch and W. Klug, “What Is Ultrasound? BT - Stimulation of Fracture Healing with Ultrasound,” H.-G. Knoch and W. Klug, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 40–51. doi: 10.1007/978-3-642-76427-1_5.
[3] M. Versluis, E. Stride, G. Lajoinie, B. Dollet, and T. Segers, “Ultrasound Contrast Agent Modeling: A Review,” Ultrasound in Medicine and Biology, vol. 46, no. 9. pp. 2117–2144, 2020. doi: 10.1016/j.ultrasmedbio.2020.04.014.
[4] R. Gramiak and P. M. Shah, “Echocardiography of the aortic root,” Invest. Radiol., vol. 3, no. 5, pp. 356–366, 1968.
[5] S. Hilgenfeldt, D. Lohse, and M. Zomack, “Response of bubbles to diagnostic ultrasound: a unifying theoretical approach,” Eur. Phys. J. B-Condensed Matter Complex Syst., vol. 4, no. 2, pp. 247–255, 1998.
[6] W. Lauterborn, “Numerical investigation of nonlinear oscillations of gas bubbles in liquids,” J. Acoust. Soc. Am., vol. 59, no. 2, pp. 283–293, 1976.
[7] S. Paul, A. Katiyar, K. Sarkar, D. Chatterjee, W. T. Shi, and F. Forsberg, “Material characterization of the encapsulation of an ultrasound contrast microbubble and its subharmonic response: Strain-softening interfacial elasticity model,” J. Acoust. Soc. Am., vol. 127, no. 6, pp. 3846–3857, 2010.
[8] M. J. Rosen and J. T. Kunjappu, Surfactants and interfacial phenomena. John Wiley & Sons, 2012.
[9] J.-P. O’Brien, E. Stride, and N. Ovenden, “Surfactant shedding and gas diffusion during pulsed ultrasound through a microbubble contrast agent suspension,” J. Acoust. Soc. Am., vol. 134, no. 2, pp. 1416–1427, 2013, doi: 10.1121/1.4812860.
[10] M. A. Borden and M. L. Longo, “Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: Effect of lipid hydrophobic chain length,” Langmuir, vol. 18, no. 24, pp. 9225–9233, 2002.
[11] M. A. Borden, D. E. Kruse, C. F. Caskey, S. Zhao, P. A. Dayton, and K. W. Ferrara, “Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 11, pp. 1992–2002, 2005.
[12] J.-P. O’Brien, N. Ovenden, and E. Stride, “Accounting for the stability of microbubbles to multi-pulse excitation using a lipid-shedding model,” J. Acoust. Soc. Am., vol. 130, no. 4, pp. EL180–EL185, 2011, doi: 10.1121/1.3630219.
[13] J. Viti, R. Mori, F. Guidi, M. Versluis, N. De Jong, and P. Tortoli, “Correspondence-Nonlinear oscillations of deflating bubbles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 59, no. 12, pp. 2818–2824, 2012.
[14] P. Marmottant et al., “A model for large amplitude oscillations of coated bubbles accounting for buckling
and rupture,” J. Acoust. Soc. Am., vol. 118, no. 6, pp. 3499–3505, 2005.
[15] J. Sijl et al., “Acoustic characterization of single ultrasound contrast agent microbubbles,” J. Acoust. Soc. Am., vol. 124, no. 6, pp. 4091–4097, 2008.
[16] “A modified Marmottant model to study the effects of a shell rupture on the subharmonic threshold of encapsulated microbubbles.”
[17] J. Morris, E. P. Ingenito, L. Mark, R. D. Kamm, and M. Johnson, “Dynamic behavior of lung surfactant,” J. Biomech. Eng., vol. 123, no. 1, pp. 106–113, 2001.
[18] D. H. Thomas et al., “The ‘quasi-stable’ lipid shelled microbubble in response to consecutive ultrasound pulses,” Appl. Phys. Lett., vol. 101, no. 7, 2012.
[19] S. M. Van der Meer et al., “Microbubble spectroscopy of ultrasound contrast agents,” J. Acoust. Soc. Am., vol. 121, no. 1, pp. 648–656, 2007.
[20] B. Helfield, “A review of phospholipid encapsulated ultrasound contrast agent microbubble physics,” Ultrasound Med. Biol., vol. 45, no. 2, pp. 282–300, 2019.