Esfe, M.H., Saedodin, S., Wongwises, S., and Toghraie, D. “An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids”, Journal Thermal Analysis and Calorimetry. 1817–1824 (2015). DOI 10.1007s10973-014-4328-8.
[2] Esfe, M.H., Abbasian Arani, A.A., Rezaie, M., Yan, W.M., and Karimipour, A. “Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid”, International Communications in Heat and Mass Transfer. (2015). DOI 10.1016/j.icheatmasstransfer.2015.06.003
[3] Habib, M.A., Badr, H.M., Ben-Mansour, R., and Kabir, M.E. “Erosion rate correlations of a pipe protruded in an abrupt pipe contraction”, Int. J. Impact Eng. 34 (2007). DOI 10.1016/j.ijimpeng.2006.07.007.
[4] Chen, X., McLaury, B.S., and Shirazi, S.A. “Numerical and experimental investigation of the relative erosion severity between plugged tees and elbows in dilute gas/solid two-phase flow”, Wear. 261 (2006). DOI 10.1016/j.wear.2006.01.022.
[5] Habib, M.A., Badr, H.M., Said Mansour, S.A.M., Ben, R., and Al-Anizi, S.S. “Solid-particle erosion in the tube end of the tube sheet of a shell-and-tube heat exchanger”, Int. J. Numer. Methods Fluids. 50 (2006). DOI 10.1002/fld.1083.
[6] Oka, Y.I., and Yoshida, T. “Practical estimation of erosion damage caused by solid particle impact”, Wear. 259 (2005). DOI 10.1016/j.wear.2005.01.040.
[7] Parslow, G.I., Stephenson, D.J., Strutt, J.E., and Tetlow, S. “Investigation of solid particle erosion in components of complex geometry”, in: Wear, 1999. DOI 10.1016/S0043-1648(99)00194-5.
[8] Forder, A., Thew, M., and Harrison, D. “A numerical investigation of solid particle erosion experienced within oilfield control valves”, Wear. 216 (1998). DOI 10.1016/S0043-1648(97)00217-2.
[9] Meng, H.C., and Ludema, K.C. “Wear models and predictive equations: their form and content”, Wear. 181–183 (1995). DOI 10.1016/0043-1648(95)90158-2.
[10] Finnie, I. “Erosion of surfaces by solid particles”, Wear. 3 (1960). DOI 10.1016/0043-1648(60)90055-7.
[11] Edwards, J.K., McLaury, B.S., and Shirazi, S.A. “Modeling solid particle erosion in elbows and plugged tees”, J. Energy Resour. Technol. Trans. ASME. 123 (2001). DOI 10.1115/1.1413773.
[12] Njobuenwu, D.O., and Fairweather, M. “Modelling of pipe bend erosion by dilute particle suspensions”, Comput. Chem. Eng. 42 (2012). DOI 10.1016/j.compchemeng.2012.02.006.
[13] Fan, J.R., Luo, K., Zhang, X.Y., and Cen, K.C. “Large eddy simulation of the anti-erosion characteristics of the ribbed-bend in gas-solid flows”, J. Eng. Gas Turbines Power. 126 (2004). DOI 10.1115/1.1760523.
[14] Grant, G., and Tabakoff, W. “An experimental investigation of the erosive characteristics of 2024 aluminum alloy”, Natl. Tech. Inf. Serv. U. S. Dep. Commer. DA-ARO-D-1 (1973).
[15] Wang, J., and Shirazi, S.A. “A CFD based correlation for erosion factor for long-radius elbows and bends”, J. Energy Resour. Technol. Trans. ASME. 125 (2003). DOI 10.1115/1.1514674.
[16] Suzuki, M., Inaba, K., and Yamamoto, M. “Numerical simulation of sand erosion phenomena in square-section 90 degree bend”, Nihon Kikai Gakkai Ronbunshu, B Hen/Transactions Japan Soc. Mech. Eng. Part B. 74 (2008). DOI 10.1299/kikaib.74.1478.
[17] Junichi, K., Toda, K., and Yamamoto, M. “Development of numerical code to predict three-dimensional sand erosion phenomena”, in: Proc. ASME/JSME Jt. Fluids Eng. Conf., 2003. DOI 10.1115/fedsm2003-45017.
[18] Neilson, J.H., and Gilchrist, A. “Erosion by a stream of solid particles”, Wear. 11 (1968). DOI 10.1016/0043-1648(68)90591-7.
[19] Mason, J.S., and Smith, B.V. “The erosion of bends by pneumatically conveyed suspensions of abrasive particles”, Powder Technol. 6 (1972). DOI 10.1016/0032-5910(72)83030-4.
[20] Li, G., Wang, Y., He, R., Cao, X., Lin, C., and Meng, T. “Numerical simulation of predicting and reducing solid particle erosion of solid-liquid two-phase flow in a choke”, Pet. Sci. 6 (2009). DOI 10.1007/s12182-009-0017-9.
[21] Menguturk, M., and Sverdrup, E. “Calculated Tolerance of a Large Electric Utility Gas Turbine to Erosion Damage by Coal Gas Ash Particles”, in: Eros. Prev. Useful Appl., 2009. DOI 10.1520/stp35802s.
[22] Shamloo, A., Ebrahimi, S., Amani, A., and Fallah, F. “Targeted Drug Delivery of Microbubble to Arrest Abdominal Aortic Aneurysm Development: A Simulation Study Towards Optimized Microbubble Design”, Sci. Rep. (2020). DOI 10.1038/s41598-020-62410-3.
[23] Ebrahimi, S., Shamloo, A,. Alishiri, M., Mozhdehbakhsh Mofrad, Y., and Akherati, F. “Targeted pulmonary drug delivery in coronavirus disease (COVID-19) therapy: A patient-specific in silico study based on magnetic nanoparticles-coated microcarriers adhesion”, Int. J. Pharm. (2021) 121133. DOI 10.1016/j.ijpharm.2021.121133.
[24] Alishiri, M., Ebrahimi, S., Shamloo, A., Boroumand, A., and Mofrad, M.R.K. “Drug delivery and adhesion of magnetic nanoparticles coated nanoliposomes and microbubbles to atherosclerotic plaques under magnetic and ultrasound fields”, Eng. Appl. Comput. Fluid Mech. 15 (2021) 1703–1725. DOI 10.1080/19942060.2021.1989042.
[25] Shamloo, A., Amani, A., Forouzandehmehr, M., and Ghoytasi, I. “In Silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque”, Int. J. Pharm. (2019). DOI 10.1016/j.ijpharm.2018.12.088.
[26] Farajollahi, A., Mokhtari, A., Rostami, M., Imani, K., Salimi, M. “Numerical study of using perforated conical turbulators and added nanoparticles to enhance heat transfer performance in heat exchangers”, Scientia Iranica, 30(3), (2023), pp. 1027-1038. DOI 10.24200/sci.2022.59717.6394
[27] Ranjbar, H., Farajollahi, A. & Rostami, M. “Targeted drug delivery in pulmonary therapy based on adhesion and transmission of nanocarriers designed with a metal–organic framework”, Biomech Model Mechanobiol 22, 2153–2170 (2023). DOI 10.1007/s10237-023-01756-9
[28] Saleh-Abadi, M., Rostami, M. & Farajollahi, A. “Successive expansion and contraction of tubes (SECTs) in a novel design of shell-and-tube heat exchanger: a comparison between basic, finned and non-finned designs”, J Braz. Soc. Mech. Sci. Eng. 45, 444 (2023). DOI 10.1007/s40430-023-04356-x.
[29] Saleh-Abadi, M., Rahmati, A., Farajollahi, A. et al. “Optimization of geometric indicators of a ventricular pump using computational fluid dynamics, surrogate model, response surface approximation, kriging and particle swarm optimization algorithm”, J Braz. Soc. Mech. Sci. Eng. 45, 431 (2023). DOI 10.1007/s40430-023-04355-y
[32] Avecilla, F.R.B., Farajollahi, A., Rostami, M. Yadav, A., and Flores, J. “Successive expansion and contraction of tubes (SECT) in a novel design of shell-and-tube heat exchanger: entropy generation analysis”, J Braz. Soc. Mech. Sci. Eng. 46, 267 (2024). DOI 10.1007/s40430-024-04850-w.
[33] Amani, A., and Farajollahi, A.H. “Drug Delivery Angle for Various Atherosclerosis and Aneurysm Percentages of the Carotid Artery”, Molecular Pharmaceutics, 2024 21 (4), 1777-1793, DOI 10.1021/acs.molpharmaceut.3c01109.
[34] Kim, C.S., Iglesias, A.J., and Garcia, L. “Deposition of Inhaled Particles in Bifurcating Airway Models: II. Expiratory Deposition”, J. Aerosol Med. Depos. Clear. Eff. Lung. 2 (1989). https://doi.org/10.1089/jam.1989.2.15.
[35] Ebrahimi, S., and Fallah, F. “Investigation of coronary artery tortuosity with atherosclerosis: A study on predicting plaque rupture and progression”, Int. J. Mech. Sci. 223 (2022) 107295. DOI 10.1016/j.ijmecsci.2022.107295.
[36] Manzoori, S., Fallah, A., Sharzehee, F., and Ebrahimi, M. “Computational Investigation of the Stability of Stenotic Carotid Artery under Pulsatile Blood Flow Using a Fluid-Structure Interaction Approach”, Int. J. Appl. Mech. 12 (2020) 10.
[37] Ebrahimi, S., Vatani, P., Amani, A., and Shamloo, A. “Drug delivery performance of nanocarriers based on adhesion and interaction for abdominal aortic aneurysm treatment”, Int. J. Pharm. 594 (2021). DOI j.ijpharm.2020.120153,