نویسندگان
دانشگاه امام حسین(ع)
چکیده
کلیدواژهها
عنوان مقاله [English]
Main difference between planning vessels, conventional displacement, and semi-displacement marine vessels is in their utilization hydrodynamic loads in addition to buoyancy force. The hydrodynamic pressure field on the bottom surface of planning vessels decreases the vessel draught and the thereafter their resistance. The resistance reduction introduces achieving higher speeds. One of the methods for improving hydrodynamic efficiency of planning vessels is utilization of transverse steps under their bottoms. Selecting their locations and heights has high sensitivity to loading conditions, speed, and center of gravity of the vessel. If proper design does not occur, it maybe followed by un-favorite effects. In this research, the flow field over the bottom of two stepped high speed planning vessels at different lading conditions were obtained, using CFD. VOF method was used for capturing the interface between water and air. Simulation was performed for one-step and two-step planning vessels of Cigar. For validating of the simulations, a grid-independency study and some comparisons with experiments are carried out. The emphasis of this study was on identification of the sensitivity of loading conditions on air-breathing of the transverse steps. The results show that the sensitivity is much higher than the traditional non-stepped planning vessels.
کلیدواژهها [English]