پیش‌بینی ضریب انتقال حرارت در جریان آشفته نانوسیالات مختلف درون لوله‌های دایره‌ای، با استفاده از شبکه عصبی مصنوعی

نویسندگان

1 گروه مهندسی مکانیک، دانشکده فنی دانشگاه امام حسین (ع)

2 باشگاه پژوهشگران جوان و نخبگان، واحد نجف آباد، دانشگاه آزاد اسلامی، واحد نجف آباد، ایران

3 دانشکده فنی مهندسی مکانیک دانشگاه کاشان

چکیده

هدف این پژوهش مدل‌سازی انتقال حرارت جابجایی نانوسیالات در جریان آشفته داخل یک لوله دایره‌ای با شرایط مرزی دما ثابت و شار حرارتی ثابت است. این مدل‌سازی با روش شبکه عصبی مصنوعی انجام شده است. تعداد 610 داده از نتایج مطالعات محققان مختلف جمع-آوری شده و برای آموزش شبکه‌ عصبی مورد استفاده قرار گرفته است. نانوذراتی که در این پژوهش مورد بررسی قرار گرفته اند عبارتند از Al2O3، TiO2، Graphene، SiC، CuO، SiO2، Fe3O4 و Cu که سیال پایه در تمام این موارد آب است. این شبکه دارای شش ورودی است که عبارتند از چگالی نانوذره، اندازه نانوذره، غلظت نانوذره، عدد رینولدز جریان، نوع شرایط مرزی شار- ثابت یا دما- ثابت و با توجه به نوع مسئله مقدار شار ثابت دیواره یا دمای ثابت آن است. همچنین، خروجی شبکه عصبی طراحی شده عدد ناسلت جریان نانوسیال است. از مقایسه نتایج این مدل شبکه‌ عصبی با نتایج پژوهش‌های گذشته مشاهده می‌شود که مدل شبکه عصبی پیشنهاد شده تطابق بسیار خوبی با نتایج حاصل از پژوهش‌های آن‌ها دارد. در این پژوهش، برای انتخاب پیکربندی مناسب شبکه عصبی، 400 پیکربندی مختلف مورد بررسی قرار گرفت که از میان آن‌ها شبکه‌ عصبی با بالاترین میزان دقت تخمین و با 9998/0=R2 انتخاب شد.

کلیدواژه‌ها


عنوان مقاله [English]

Forecasting of Convective Heat Transfer Coefficient in Turbulent Flow of Different Nanofluids in Circular Tubes, Using Artificial Neural Network

نویسندگان [English]

  • mohammad hemmat asfe 1
  • saeed esfande 2
  • mohammad akhoound zade 3
1 emam hosein
2 azad , najaf abad
3 kashan
چکیده [English]

Modeling of turbulent convective heat transfer of nanofluids in circular tubes with constant temperature and constant heat flux boundary condition have been performed using artificial neural network. 610 sets of data have been gathered using previous investigations and have been used to train neural network (ANN). The investigated nanoparticles are: TiO2, Graphene, SiC, CuO, SiO2, Fe3O4, and Cu. The base fluid for all these nanofluids is water. The neural network used has 6 inputs, which includes: nanoparticle density, nanoparticle size, nanoparticle volume fraction, flow Re number, type of boundary condition (constant heat flux or constant temperature) and the amount of heat flux or temperature related to these boundary conditions. Also, the output of neural network is Nusselt number. Comparing our results with previous investigation, showed that the proposed ANN topology are in good agreement. In this study, the proposed topology of R2=0.9998 have been choosen between 400 examined ones.

کلیدواژه‌ها [English]

  • Nanofluid
  • Turbulent Flow
  • Nusselt Number
  • Artificial Neural Network
  1. Zeinali Heris, S., Etemad, S.Gh., and Nasr Esfahany, M. “Experimental Investigation of Oxide Nanofluid Laminar Flow Convective Heat Transfer in Circular Tube”, Int. Commun. Heat. Mass., Vol. 33, pp. 529–533, 2006.
  2.  Zeinali Heris, S., Nasr Esfahany, M., and Etemad, S.Gh. “Experimental Investigation of Convective Heat Transfer of Al2O3/Water Nanofluid in Circular Tube”,  Int. J. Heat. Fluid. Flow, Vol. 28, pp. 203–210, 2007.
  3. Esfe, M.H., Arani, A.A.A., Niroumand, A.H., Yan, W.M., and Karimipour, A. “Mixed Convection Heat Transfer from Surface-Mounted Block Heat Sources in a Horizontal Channel with Nanofluids”, Int. J. Heat Mass. Tran., Vol.  89, pp. 783-791, 2015.
  4. Esfe, M.H., Arani, A.A.A., Azizi, T., Mousavi, S.H., and Wongwises, S. “Numerical Study of Laminar-Forced Convection of Al2O3-Water Nanofluids Between Two Parallel Plates”, J. Mech. Sci. Tech., Vol. 31, No. 2, pp. 785-796, 2017.
  5. Hetsroni, G. and Rozenblit, R. “Heat Transfer to a Liquid–Solid Mixture in a Flume”, Int. J. Multiph. Flow, Vol. 20, No. 4, pp. 671–689, 2005.
  6. Eastman, JA., Choi, SUS., Li, S., Soyez, G., Thompson, LJ., and DiMelfi, RJ. “Novel Thermal Properties of Nanostructure Materials”, Mater. Sci. Forum, Vol. 312, pp. 629–634, 1999.
  7. Esfe, M.H., Saedodin, S., Mahian, O., and Wongwises, S. “Heat Transfer Characteristics and Pressure Drop of COOH-Functionalized Dwcnts/Water Nanofluid in Turbulent Flow at Low Concentrations”, Int. J. Heat Mass Tran., Vol.  73, pp. 186-194, 2014.
  8. Esfe, M.H., Saedodin, S., and Mahmoodi, M. “Experimental Studies on the Convective Heat Transfer Performance and Thermophysical Properties of Mgo–Water Nanofluid Under Turbulent Flow”,  Exp. Therm Fluid Sci., Vol. 52, pp. 68-78, 2014.
  9. Esfe, M.H., Akbari, M., Karimipour, A., Afrand, M., Mahian, O., and Wongwises, S. “Mixed-convection Flow and Heat Transfer in an Inclined Cavity Equipped to a Hot Obstacle Using Nanofluids Considering Temperature-Dependent Properties”, Int. J. Heat Mass Tran., Vol. 85, pp. 656-666, 2015.

10. Esfe, M.H. and Saedodin, S. “Turbulent Forced Convection Heat Transfer and Thermophysical Properties of Mgo–Water Nanofluid with Consideration of Different Nanoparticles Diameter, an Empirical Study”, J. Therm. Anal. Calorim, Vol. 119, pp. 1205-1213, 2015.

11. Esfe, M.H., Saedodin, S., Mahian, O., and Wongwises, S. “Thermophysical Properties, Heat Transfer and Pressure Drop of COOH-Functionalized Multi Walled Carbon Nanotubes/Water Nanofluids”, Int. Commun. Heat Mass., Vol. 58, pp. 176-183, 2014.

12. Godson, L., Raja, B., Lal, D. M., and Wongwises, S. “Enhancement of Heat Transfer Using Nanofluids-An Overview”, Renew Sust. Energ. Rev., Vol. 14, pp. 629-641, 2010.

13. Pak, B.C. and Cho, Y.I. “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles”, Exp. Heat Tran. Int. J., Vol. 11, pp. 151-170, 1998.

14. Landau, L.D. and Lifshitz, E.M. “Course of Theoretical Physics”, Electro. Cont. Med., Oxford, Vol. 8, 1960.

15. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, F. E., and Grulke, E.A. “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions”, Appl. Phys. Lett., Vol. 79, pp. 2252-2254, 2001.

16. Xuan, Y. and Roetzel, W. “Conceptions for Heat Transfer Correlation of Nanofluids”, Int. J. Heat Mass Tran., Vol. 43, pp. 3701-3707, 2000.

17.  Khanafer, K., Vafai, K., and Lightstone, M. “Buoyancy-driven Heat Transfer Enhancement in a Two-dimensional Enclosure Utilizing Nanofluids”, Int. J. Heat Mass Tran., Vol. 46, pp. 3639-3653, 2003.

18. Das, S.K., Choi, S.U., and Patel, H.E. “Heat Transfer in Nanofluids—A Review”, Heat Transfer Eng., Vol. 27, pp. 3-19, 2006.

19. Mansour, R.B., Galanis, N., and Nguyen, C.T. “Effect of Uncertainties in Physical Properties on Forced Convection Heat Transfer with Nanofluids”, Appl. Therm. Eng., Vol. 27, pp. 240-249, 2007.

20. Namburu, P.K., Das, D.K., Tanguturi, K.M., and Vajjha, R.S. “Numerical Study of Turbulent Flow and Heat Transfer Characteristics of Nanofluids Considering Variable Properties”, Int. J. Therm. Sci., Vol. 48, pp. 290-302, 2009.

21. Maiga, S.E.B., Nguyen, C.T., Galanis, N., and Roy, G. “Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube”, Superlattice Microst, Vol. 35, pp. 543-557, 2004.

22.  Behzadmehr, A., Saffar-Avval, M., and Galanis, N. “Prediction of Turbulent Forced Convection of a Nanofluid in a Tube With Uniform Heat Flux Using a Two Phase Approach”, Int. J. Heat Fluid Flow, Vol. 28, pp. 211-219, 2007.

23. Heidari, E., Sobati, M.A., and Movahedirad, S. “Accurate Prediction of Nanofluid Viscosity, Using a Multilayer Perceptron Artificial Neural Network (MLP-ANN)”, Chemometr Intell Lab, Vol. 155, pp. 73-85, 2016.

24. Esfe, M.H., Saedodin, S., Bahiraei, M., Toghraie, D., Mahian, O., and Wongwises, S. “Thermal Conductivity Modeling of Mgo/EG Nanofluids, Using Experimental Data and Artificial Neural Network”, J. Therm. Anal. Calorim., Vol. 118, pp. 287-294, 2014.

25. Esfe, M.H., Saedodin, S., Sina, N., Afrand, M., and Rostami, S. “Designing an Artificial Neural Network to Predict Thermal Conductivity and Dynamic Viscosity of Ferromagnetic Nanofluid”, Int. Commun. Heat Mass, Vol. 68, pp. 50-57, 2015.

26. Hojjat, M., Etemad, S.G., Bagheri, R., and Thibault, J. “Thermal Conductivity of Non-Newtonian Nanofluids: Experimental Data and Modeling Using Neural Network”, Int. J. Heat Mass Tran., Vol. 54, pp. 1017-1023, 2011.

27. Pak, BC. and Cho, IY. “Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Sub-Micron Metallic Oxide Particles”, Exp. Heat Tran., Vol.  11, pp. 151–170, 1998.

28.  Xuan, Y. and Li, Q. “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, J. Heat Trans. Vol. 125, pp. 151–155, 2003.

29. Maiga, S., Palm, S., Nguyen. C., Roy. G. and Galanis, N. “Heat Transfer Enhancements, Using Nanofluids in Forced Convection Flows”, Int. J. Heat Fluid Fl, Vol.  26, pp. 530–46, 2005.

30. Buongiorno, J. “Convective Transport in Nanofluids”, J. Heat Transfer, Vol. 128, pp. 240-250, 2006.

31. Buongiorno, J. “Convective Heat Transfer Enhancement in Nanofluids”; Heat Mass Tran. Conf. Washington, USA, 2006.

32. Bécaye Maïga, S., Tam Nguyen, C., Galanis,  N., Roy, G., Maré, T., and Coqueux, M. “Heat Transfer Enhancement in Turbulent Tube Flow, Using Al2O3 Nanoparticle Suspension”, Int. J. Num. Method, Vol. 16, pp. 275-292, 2006.

33. Kakac, S. and Pramuanjaroenkij, A. “Review of Convective Heat Transfer Enhancement with Nanofluids”, Int. J. Heat Mass Trans, Vol. 52, pp. 3187-3196, 2009.

34. Fotukian, S.M. and Esfahany, M.N. “Experimental Investigation of Turbulent Convective Heat Transfer of Dilute Γ-Al2O3/Water Nanofluid Inside a Circular Tube”, Int. J. Heat Fluid Flow, Vol. 31, pp. 606-612, 2010.

35.  Sajadi, A.R. and Kazemi, M.H. “Investigation of Turbulent Convective Heat Transfer and Pressure Drop of Tio2/Water Nanofluid in Circular Tube”, Int. Commun. Heat Mass Transf, Vol. 38, pp. 1474-1478, 2011.

36. Sadeghinezhad, E., Togun, H., Mehrali, M., Nejad, P.S., Latibari, S.T., Abdulrazzaq, T., and Metselaar, H. S.C. “An Experimental and Numerical Investigation of Heat Transfer Enhancement for Graphene Nanoplatelets Nanofluids in Turbulent Flow Conditions”, Int. J. Heat Mass Trans., Vol. 8, pp. 41-51, 2015.

37. Hussein, A.M., Sharma, K.V., Bakar, R.A., Kadirgama, K. “The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor Inside a Horizontal Tube”, J. Nano mat., Vol.1, pp. 1-12, 2013.

38. Celata, G.P., D’Annibale, F., Mariani, A., Saraceno. L., D’Amato. R., and Bubbico, R. “Heat Transfer in Water-Based Sic and Tio2 Nanofluids”, Heat Transfer Eng., Vol. 34, pp. 1060-1072, 2013.

39.  Xuan, Y. and Li, Q. “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, J. Heat Tran., Vol. 125, pp. 151-155, 2003.

40.  Fotukian. S.M. and Esfahany, M.N. “Experimental Study of Turbulent Convective Heat Transfer and Pressure Drop of Dilute Cuo/Water Nanofluid Inside a Circular Tube”, Int. Commun. Heat Mass trans, Vol. 37, pp. 214-219, 2010.

41. Azmi, W.H., Sharma, K.V., Sarma, P. K., Mamat, R., Anuar, S., and Rao, V.D. “Experimental Determination of Turbulent Forced Convection Heat Transfer and Friction Factor with Sio2 Nanofluid”, Exp. Therm. Fluid Sci., Vol. 51, pp. 103-111, 2013.

42.  Sundar, L.S., Naik, M.T., Sharma, K.V., Singh, M. K., and Reddy, T.C.S. “Experimental Investigation of Forced Convection Heat Transfer and Friction Factor in a Tube with Fe3O4 Magnetic Nanofluid”, Exp. Therm. Fluid Sci., Vol. 37, pp. 65-71, 2012.

43. Haghighi, E.B., Utomo, A.T., Ghanbarpour, M., Zavareh, A.I., Poth, H., Khodabandeh, R.,  and Palm, B.E. “Experimental Study on Convective Heat Transfer of Nanofluids in Turbulent Flow: Methods of Comparison of Their Performance”, Exp. Therm. Fluid Sci., Vol. 57, pp. 378-387, 2014.

44. Moghadassi, A., Parvizian, F., and Hosseini, S. “A New Approach Based on Artificial Neural Networks for Prediction of High Pressure Vapor-Liquid Equilibrium”, A. J. B. A. S., Vol. 3, pp. 1851-1862, 2009.

45. Collobert, R. and Bengio, S. “Links between Perceptrons, Mlps and Svms”; Proc. Int'l Conf. on Machine Learning (ICML), 2004.