روش پایه مشخصه سه‏بعدی و بررسی تاثیر ضریب تراکم‏پذیری مصنوعی کورین روی دقت و سرعت همگرایی آن

نویسنده

گروه مهندسی مکانیک، دانشکده فنی و مهندسی دانشگاه بناب

چکیده

در این مقاله روش پایه‌ مشخصه برای جریان‏های تراکم‏ناپذیر سه‏بعدی ناپایا استفاده شده است. در ابتدا، از فرض تراکم‏پذیری کورین استفاده شده و سپس معادلات سازگاری و مشخصه‏های مجازی به‏دست آمده‌اند. با حل عددی معادلات مشخصه، ابرمخروط ماخ مجازی چهاربعدی به‏دست می‏آید. برای حل عددی این معادلات کدهایی در نرم‌افزار متلب نوشته شده است. این ابرمخروط در جریان‏های دوبعدی، یک مخروط سه‏بعدی خواهد بود. شکل این سطح با حل عددی به‏دست می‏آید که برای به‏دست آوردن این شکل نیز، کدنویسی‏های دیگری در نرم‌افزار متلب انجام شده است. شبیه‏سازی‏های مختلفی برای جریان‏های همرفت طبیعی و اجباری با اعداد بی‏بعد گراشف، رینولدز و پرانتل مختلف انجام شده است. برای این شبیه‏سازی‏ها، کدهایی در نرم‌افزار فرترن نوشته شده است. همچنین، در این مقاله تاثیر ضریب تراکم‏پذیری روی سرعت همگرایی و دقت نتایج بررسی شده است. نتایج نشان می‏دهد سرعت صوت مجازی تابعی از ضریب تراکم‏پذیری کورین و جهت انتشار می‏باشد، در حالی‌که در جریان‏های تراکم‏پذیر سرعت صوت در تمامی جهات ثابت می‏باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Three-dimensional Characteristic Based Scheme and Artificial Compressibility Factor on Its Accuracy and Convergence

نویسنده [English]

  • tohid adibi
bonab
چکیده [English]

In this paper, the characteristics of three-dimensional incompressible flows were obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows were derived. Results showed that pseudo sound speed in incompressible flow is a function of compressibility parameter and the direction. The speed of sound is constant in compressible flows. By numerical solution of characteristics,               four-dimensional pseudo hyper Mach cone was obtained. A code in MATLAB has been written to obtain numerical solution. In two-dimensional flows, one has three-dimensional Mach cone, instead of four dimensional one. This cross section is circle for compressible flows. In this work, natural and forced convections, were simulated in different dimensionless numbers: Reynolds, Prandtl, and Nusselt numbers. For these simulations, a new code has been written in FORTRAN. In the last part of this research, the influence of compressible parameter on accuracy and convergence was surveyed.

کلیدواژه‌ها [English]

  • Three-Dimensional Characteristics
  • Incompressible Flow
  • Artificial Compressibility
  • Convergence History
  • Energy Equation
  • Natural and Forced Convections
  1.           Chorin, A.J. “A Numerical Method for Solving Incompressible Viscous Flow Problems”, J. Comput. Phys. Vol. 135, No. 2, p.p. 118-125, 1997.
  2.           Tamamidis, P., Zhang, G., and Assanis, D.N. “Comparison of Pressure-Based and Artificial Compressibility Methods for Solving 3D Steady Incompressible Viscous Flows”, J. Comput. Phys. Vol. 124, No. 1, p.p. 1-13, 1996.
  3.           Ohwada, T., Asinari, P., and Yabusaki, D. “Artificial Compressibility Method and Lattice Boltzmann Method: Similarities and Differences”, CAMWA, Vol. 61, No. 12, p.p. 3461-3474, 2011.
  4.           Drikakis, D., Govatsos, P.A., and Papantonis, D.E. “A Characteristic-Based Method for Incompressible Flows”, Int. J. Num. Methods Fluids, Vol. 19, p.p. 667-685, 1994.
  5.           Drikakis, D. “A Parallel Multiblock Characteristic-Based Method for Three-dimensional Incompressible Flows”, Adv. Eng. Soft., Vol. 26, No. 2, p.p. 111-119, 1996.
  6.           Zhao, Y. and Zhang, B. “A High-Order Characteristics Upwind FV Method for Incompressible Flow And Heat Transfer Simulation on Unstructured Grids”, Comput. Methods in Appl. Mech. Eng., Vol. 190, No's. 5–7, p.p. 733-756. 2000.
  7.           Tai, C.H. and Zhao, Y. “Parallel Unsteady Incompressible Viscous Flow Computations Using an Unstructured Multigrid Method”, J. Comput. Phys., Vol. 192, No. 1, p.p. 277-311. 2003.
  8.           Su, X., Zhao, Y., and Huang, X. “On the Characteristics-Based Acm for Incompressible Flows”, J. Comput. Phys., Vol. 227, No. 1, p.p. 1-11, 2007.
  9.           Adibi, T. and Razavi, S.E. “A New Characteristic Approach for Incompressible Thermo-Flow in Cartesian and Non-cartesian Grids”, Int. J. Num. Methods Fluids, Vol. 79, p.p. 371-393, 2015.

10.           Razavi, S.E. and Adibi, T. “A Novel Multidimensional Characteristic Modeling of Incompressible Convective Heat Transfer”, J. Applied Fluid Mechanics (JAFM), Vol. 9, No. 4, 2016.

11.  Adibi, T. and Razavi, S.E.  “A New-Characteristic Approach for Incompressible Thermo-Flow”, JSFM, Vol. 5, p.p. 283-296, 1394 (in Persian).

12.           Razavi, S.E. and Hanifi, M. “A Multi-dimensional Virtual Characteristic Scheme for Laminar And Turbulent Incompressible Flows”, J. Applied Fluid Mechanics (JAFM), Vol. 9, No, 4, p.p. 1579-1590, 2016.

13. Zamzamian, K. and Razavi, S.E. “Multi-dimensional Upwinding for Incompressible Flows Based on Characteristics”, J. Comput. Phys., Vol. 227, No. 19, p.p. 8699-8713, 2008.

14.           Razavi, S.E., Zamzamian, K. and Farzadi, A. “Genuinely Multi-dimensional Characteristic-Based Scheme for Incompressible Flows”, Int. J. Num. Methods Fluids, Vol. 8, p.p. 929-949, 2008.

15.           Hashemi, M.Y. and Zamzamian, K. “A            Multi-dimensional Characteristic-Based Method for Making Incompressible Flow Calculations on Unstructured Grids”, J. Comp. and Appl. Math. (IJCAM), Vol. 259, p.p. 752-759, 2014.

16. Doustdar, M.M and Yekani, M.K. "Numerical Study of Mixed Convection of Nano Fluid in a Lid-Driven Cavity Containing Hot Obstacles" Airospace Mechanics j., Vol. 12. 2015 (in persian).

17. Mahmoodi, M. and Ebrahimi, M. " Numerical Simulation of Counter-Flow Wet Cooling Tower and Water Losses Effect on Characteristic Performance "Airospace Mechanics j., Vol. 12, 2015 (in persian).

18. Cheng, T.S. and Liu, W.H. “Effect of Temperature Gradient Orientation on the Characteristics of Mixed Convection Flow in a Lid-Driven Square Cavity”, Comp. Fluids, Vol. 39, No. 6, p.p. 965-978, 2010.

19.           Iwatsu, R., Hyun, J.M., and Kuwahara, K. “Mixed Convection in a Driven Cavity with a Stable Vertical Temperature Gradient”, Int. Commun. Heat Mass, Vol. 36, No. 6, p.p. 1601-1608, 1993.