افزایش بازدهی دسته لوله دایروی پره‌دار با تغییر شکل و تغییر پارامترهای هندسی در جریان آشفته

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی دانشگاه

2 سیستان و بلوچستان

چکیده

در این مقاله، افزایش بازدهی دسته لوله‌های فشرده پره‌دار با سطح مقطع دایروی، استفاده‌شده در مبدل‌های پوسته و لوله، بررسی می‌شود. به این منظور ابتدا تغییر سطح مقطع یک ردیف از دسته لوله بدون پره با لوله بیضوی در جریان آشفته مطالعه می‌شود و تأثیر قطر و گام طولی روی بهترین عملکرد دسته لوله بررسی می‌گردد. پس از محاسبه بهترین حالت از نظر عملکرد، تأثیر اعمال پره بر بازدهی دسته لوله تغییر شکل داده‌شده بررسی می‌شود. از روش SST- k-ω برای حل جریان در این حالات استفاده می‌شود. نتایج نشان می‌دهد که با تغییر شکل ردیف پنجم از دسته لوله‌ها با قطر 02/0 متر از دایروی به بیضوی، افزایش کارایی حدود 21% است، با کاهش قطر لوله‌ها تا 015/0 متر و با افزایش قطر تا 024/0 متر و ثابت نگه‌داشتن گام طولی، به ترتیب تغییر شکل ردیف چهارم افزایش کارایی تا حدود 31% و ردیف ششم افزایش کارایی حدود 6% را به همراه دارند. در قطر 02/0 متر، کاهش گام طولی و افزایش آن به ترتیب 35% و 18% افزایش بازدهی را نتیجه می‌دهد. سپس می­توان گفت که افزایش کارایی هم به قطر لوله و هم به گام طولی بستگی دارد، اما تغییرات قطر تأثیر بیشتری روی انتخاب بهترین ردیف دارد. همچنین، دسته لوله با ترکیبی از لوله‌های بیضوی و دایروی بازدهی را تا 11% و 12% به ترتیب برای قطر 02/0 و 024/0 متر افزایش می‌دهد.

کلیدواژه‌ها


  1. Abd-Elhady, M.S., Rindt, C.C. M., and Van Steenhoven, A.A. “Influence of the Apex Angle of Cone-Shaped Tubes on Particulate Fouling of Heat Exchangers”, J. Heat Transfer Eng., Vol. 32, No's. 3-4, pp. 272-281, 2011.
  2. Bouris, D., Konstantinidis, E., Balabani, S., Castiglia, D., and Bergeles, G. “Design of a Novel Intensified Heat Exchanger for Reduced Fouling Rates”, ASME, Int. J. Heat Mass Transfer. Vol. 48, pp. 3817-3832, 2003.
  3. Zhang, G., Bott, T.R., and Bemrose, C.R. “Reducing Particle Deposition in Air-Cooled Heat Exchangers”, J. Heat Transfer Eng. Vol 13, pp. 81-87, 1992.
  4. Rocha, L.A.O., Saboya, F.E.M., and Vagas, J. V.C. “A Comparative Study of Elliptical and Circular Sections in One and Two-row Tubes and Plate Fin Heat Exchangers”, Int. J. Heat and Fluid Flow, Vol. 18, No. 2, pp. 247-252, 1997.
  5. Paul, S. S., Ormiston, S.J., and Tachie, M.F. “Experimental and Numerical Investigation of Turbulent Crossflow in a Staggered Tube Bundle”, Int. J. Heat Fluid Flow, Vol. 29, pp. 387-414, 2008.
  6. Ibrahim, T.A., and Gomaa, A. “Thermal Performance Criteria of Elliptic tube Boundle in Crossflow”, Int. J. Therm Sci. Vol. 48, pp. 2148-2158, 2009.
  7. Walmsley, T.G., Walmsley, M.R.W., M.J. Atkins, M.J., Hoffman-Vocke, J., and Neale, J.R. “Numerical Performance Comparison of Different Tube Crosssections for Heat Recovery from Particle-laden Exhaust Gas Streams”, Procedia Engineer., Vol. 42, pp. 1351-1364, 2012.
    1. Kawamura, K. and Yasuo, A. “Turbulenc-Induced Vibration of Tube Bundle In Cross and Parallel Jet Mixed Flow”, Int. J. Pressure Vessel Tech. Vol. 111, No. 4, pp. 352-360, 1989.
    2. Braza, M., Chassing, P., and Haminh, H. “Prediction of Large-Scale Transition Features in the Wake of the Circular Cylinder”, J. Phys. Fluids. Vol. 2, pp. 1461-1471, 1990.
    3. Mon, M.S. and Gross, U. “Numerical Study of Fin-spacing Effects in Annular-finned Tube Heat Exchangers”, Int. J. Heat Mass Transfer. Vol. 47, pp. 1953–1964, 2004.
    4. Nemati, H. and Moghimi, M. “Numerical Study of Flow over Annular-Finned Tube Heat Exchangers by Different Turbulent Models”, Int. J. CFD Letters, Vol. 6, No. 3, pp. 101-112. 2014.
    5. Iacovides, H., Launder, B., and West, A. “A Comparison and Assessment of Approaches for Modelling Flow over In-Line Tube Banks”, Int. J. Heat Fluid Flow, Vol. 49, pp. 69-79, 2014.
    6. Aiba, S., Tsuchida, H., and Ota, T. “Heat Transfer Around Tubes in In-Line Tube Banks”, Bull. JSME, Vol. 25, pp. 219–926, 1982.
    7. Mavridou, S.G., and Bouris, D.G. “Numerical Evaluation of a Heat Exchanger with Inline Tubes of Different Size for Reduced Fouling Rates”, Int. J. Heat and Mass Transfer, Vol. 55, pp. 5185-5195, 2012.
    8. Mavridou, S.G., Konstandinidis, E., and Bouris, D.G. “Experimental Evaluation of Pairs of Inline Tubes of Different Size as Components for Heat Exchanger Tube Bundles”, Int. J. Heat and Mass Transfer, Vol. 90, pp. 280-290, 2015.
    9.  Payan, S., and Imani, F. “Enhancement of Efficiency of Circle Tube Banks Using Change of Shape of Tubes in a Special Row with Turbulent Flow”, Aerodynamic Fluid Mechanics, Vol. 4, No. 2, pp. 11-18, 2016.
    10. Mohanty, R.L., Swain, A., and Das M.K. “Thermal Performance of Mixed Tube Bundle Composed of Circular and Elliptical Tubes” J. The. Sci. and Eng. Progress, Vol. 5, pp. 492-505, 2018.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Zukauskas, A. “Heat Transfer from Tubes in Crossflow”, J. Adv. Heat Transfer, Vol. 8, pp. 93-160, 1972.
  2. Zukauskas, A., and Ulinskas, R. “Heat Transfer in Tube Banks in Crossflow”, Washington, United State, 1987.
  3. Kays, W.M., and London, A.L. “Compact Heat Exchangers”, McGraw Hill, New York, 1984.
  4. Colburn, A.P. “A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Fluid Friction”, J. Trans. Am. Inst. Chem. Eng., Vol. 29, No. 1, pp. 174–210, 1933.
  5. Mon,  M.S. “Numerical Investigation of air-side Heat Transfer and Pressure Drop in Circular finned-tube heat exchangers”, PhD Dissertation, Von der Fakultät für Maschinenbau, Verfahrens- und Energietechnik der Technischen Universität Bergakademie Freiberg, 2003.
    1. Ward, D.J., and Young, E.H. “Heat Transfer and Pressure Drop of Air in Forced Convection Across Triangular-Pitch Banks of Finned Tubes”, Chem. Eng. Prog., Vol. 54, No. 29, pp. 37-44, 1959.