بررسی عددی تأثیر چرخش بر اثربخشی خنک‌کاری لایه‌ای پره توربین با جریان هوای خنک‌کننده نوسانی موج مربعی

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه سمنان

چکیده

در این مقاله اثر چرخش پره توربین بر توزیع دما و اثربخشی خنک­کاری لایه­ای برای جریان سیال خنک­کننده نوسانی موج مربعی به‌صورت عددی بررسی شده است. جریان هوای نوسانی مربعی در سه فرکانس 2، 50 و Hz500 جهت خنک­کاری به سطح پره توربین تزریق می­شود. چهار سرعت چرخش 0، 500، 800 و rpm 1000 در دو جهت مثبت و منفی جهت ایجاد سطوح فشار و مکش در نظر گرفته شده است. مدل­سازی هندسه در نرم­افزار گمبیت و تحلیل عددی توسط نرم­افزار فلوئنت انجام شده است. جهت در نظر گرفتن اثرات آشفتگی از مدل توربولانسی  استفاده شده است. چرخش باعث انحراف جریان خنک­کننده از خط مرکزی می‌شود. با نوسانی کردن جریان خنک‌کننده به فرم مربعی، میزان اثربخشی خط مرکزی در هر گام زمانی یک سیکل تغییر می­کند. نتایج نشان داد به‌طور کلی مقادیر اثربخشی در تمامی سرعت­های چرخش در سمت فشار پره بیشتر از سمت مکش است و با افزایش فرکانس­ میزان اثربخشی متوسط خط مرکزی افزایش ­می­یابد.

کلیدواژه‌ها


  1. Gao, W.J., Yue, Z.F., Li, L., Zhao, Z.N., and Tong, F.J. “Numerical Simulation on Film Cooling with  Compound Angle of Blade Leading Edge Model for Gas  Turbine”, Int. J. Heat Mass Transf., Vol. 115, No. 12, pp. 839-855, 2017.
  2. Li, Y., Zhang, Y., Su, X., and Yuan, X. “Experimental and  Numerical Investigations of Shaped  Hole Film Cooling  with the Influence of Endwall Cross Flow”, Int. J. Heat Mass Transf., Vol. 120, No. 1, pp. 42- 55, 2018.
  3. Calvin, W.E. “Turbine Cooling: USA”; US Patent 3,963,368, 1976.
  4. John, W.J. “Cooling of Aerofoil Shaped Blades: USA”; US Patent 3,620,643, 1971.
  5. Bunker, R. S. and Metzger, D.E. “Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions. Part I: Impingement Cooling without Film  Coolant Extraction”, J. Turbomach., Vol. 112, No. 3 , pp. 451–458, 1990.
  6. Bunker, R. S. and Metzger, D. E. “Local Heat Transfer  in Internally Cooled Turbine Airfoil Leading Edge Regions. Part II: Impingement Cooling with Film  Coolant Extraction”, J. Turbomach., Vol. 112, No. 3, pp.  459–466, 1990.
  7. Shin, S. and Kwak, J. S. “Effect of Hole Shape on  the Heat Transfer in a Rectangular Duct with Perforated Blockage Walls”, J. Mech. Sci. Technol., Vol. 22, No. 10, pp. 1945–1951, 2008.
  8. Wang, K., Guoqiang, X., Sun, J., and Tao, Z.  “Effect of Combined Impingement Cooling and Film  Cooling on Hybrid Cooling Effectiveness”, J. Beijing  Univ. Aeronaut. Astronaut., Vol. 34, No. 7, pp. 751–754, 2008.
  9. Wang, K., Guoqiang, X., Sun, J., and Tao, Z. “Effect of Plenum Feed Configurations on the Cooling  Effectiveness in the Hybrid Cooling Configuration”, J.  Eng. Thermophys., Vol. 29, No. 7, pp. 1185–1188, 2008.
  10. Taslim, M. E. and Pan, Y. “An Experimental Study of   Impingement on Roughened Airfoil Leading Edge Walls with Film Holes”, ASME J., Vol. 123, No. 4, pp. 767–773, 2001.
  11. Dolati, S., Amanifard, N., and Deilami, H.M. “Numerical Analysis of the Effect of Plasma Stimulator on Film Cooling Effectiveness on the Flat Plate Model”, Amirkabir J. Mech. Eng., Vol. 49, No. 3, pp. 605-616, 2016 (In Persian).
  12. Hosseini Vajargah, N., Salimi, M. R., and Taeibi Rahni, M. “Numerical Simulation of Film Cooling around the Gas Turbine Blade by Partial Averaging Method of Navier-Stokes Equations”, Amirkabir J. Mech. Eng., Vol. 48, No. 3, pp. 267-280, 2016 (In Persian).
  13. Taslim, M. E., Bakhtari, K., and Liu, H. “Experimental and Numerical Investigations of Impingement on a Rib Roughened Leading Edge  Wall”, ASME J., Vol. 125, No. 4, pp. 682– 691, 2003.
  14. Taslim, M.E. and Khanicheh, A. “Experimental and  Numerical Study of Impingement on an Airfoil Leading Edge with and  without Showerhead and Gill Film Holes”, ASME J., Vol. 128, No. 2, pp. 310–320, 2006.
  15. Taslim, M.E. and Bethka, D. “Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel with Cross-Flow”, ASME J., Vol. 131, No. 1, pp. 1-7, 2009.
  16. Tao, Z., Yang, X., Ding, S., Guoqiang, X., Wu, H., Deng, H., and Xiang, L. “Experimental Study of Rotation Effect on Film  Cooling over the Flat wall with a Single Hole”, Exp. Thermal Fluid  Sci., Vol. 32, No. 5, pp. 1081-1089, 2008.
  17. Moeini, A. H. and Rajabi Zargar Abadi, M. “Numerical Analysis of Film-Cooling over the Rotating Turbine Blade, Using Laterally-Diffused Hole”, Mech. Aerospace Eng. J., Vol. 14, No. 3, pp. 41-54, 2018 (In Persian).
  18. Guoqiang, X., Jianqin, Z., and Tao, Z.  “Application of the TLVA Model for Predicting Film Cooling under Rotating Frames”,  Int. J. Heat Mass Transf., Vol. 53, No. 15-16, pp. 3013-3022, 2010.
  19. Tao, Z., Zhenming, Z., Ding S., Guoqiang,  X., and  Wu, H. “Suitability of Three Different Two-Equation Turbulence Models in Predicting Film Cooling  Performance over a Rotating Blade”, Int. J. Heat Mass Trans., Vol. 52, No. 5-6,  pp. 1268-1275, 2009.
  20. Guoqiang, X., Yang, B., Tao, Z., Zhao, Z., and Wu, H. “Local Heat Transfer  Measurements on a Rotating Flat Blade Model with a Single Film Hole”, Progg. Nat. Sci., Vol. 19, No. 3, pp. 321-330, 2009.
  21. Guoqing, L., Junqiang, Z., Deng, H., Tao, Z., and  Haiwang, L. “Experimental Investigation of Rotating Film Cooling Performance in a Low Speed 1.5-Stage Turbine”, Int. J. Heat Mass Transf., Vol. 61, No. 1, pp. 18-27, 2013.
  22. Deng, H., Zhenpeng, G., Jianqin, Z., and Tao, Z. “Experiments on Impingement Heat Transfer with Film Extraction Flow on the Leading Edge of Rotating Blades”, Int. J. Heat Mass Transf., Vol. 55, No. 21-22, pp. 5425-5435, 2012.
  23. Zhaoqing, K. and Wang, J. ”Numerical Investigations of Pulsed Film Cooling on an Entire Turbine Vane”, Appl. Therm. Eng., Vol. 87, pp. 117-126, 2015.