طراحی کنترل پیشبین مدل چند متغیره برای موتور توربوفن و مقایسه عملکرد با کنترل‌کننده Min-Max

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک دانشگاه علم و صنعت ایران

چکیده

کنترل‌کننده موتور توربوفن وظیفه تأمین رانش مورد درخواست خلبان را در حین حفظ قیود متنوع حاکم بر محدودیت‌های ساختاری و عملکردی بر عهده دارد. لذا، راهبرد‌هایی که جهت کنترل موتور هواپیما به‌کار ‌گرفته می­شوند، می­بایست امکان لحاظ قیود سامانه را در ساختار خود داشته باشند. در این تحقیق، یک کنترل‌کننده پیش‌بین مدل چند متغیره بر اساس مدل فضای حالت خطی برای یک موتور توربوفن طراحی می‌شود. این کنترل‌کننده توانایی لحاظ قیود متنوع ورودی و خروجی را در حین تأمین دستور رانش دارد. به دلیل عدم تطبیق بین مدل خطی‌سازی­شده برای کنترل‌کننده و مدل غیرخطی موتور در ساختار کنترلی ارائه‌شده از روش اصلاح بازخورد جهت بهبود عملکرد کنترل‌کننده MPC استفاده می‌شود. در این روش، علاوه بر سوخت به‌عنوان ورودی کنترلی اصلی، نشتی نیز به‌عنوان یک ورودی کنترلی کمکی جهت کاهش احتمال وقوع سرج کمپرسور به‌صورت حلقه بسته مدنظر قرار می­گیرد. در شبیه­سازی با استفاده از مدل غیرخطی ترمودینامیکی، عملکرد کنترل‌کننده طراحی‌شده با روش چند حلقه‌ای Min-Max که به‌طور معمول جهت کنترل موتورهای هوایی به­کار گرفته می­شود، مقایسه می‌شود. نتایج شبیه­سازی عملکرد مؤثر کنترل‌کننده پیشنهادی را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Multi-variable Model Predictive Control Design for a Turbofan Engine and Performance Comparison with Min-Max Controller

نویسندگان [English]

  • morteza montazeri
  • milad ehteshami
  • amin emani
elm o sanAt
چکیده [English]

The turbofan engine controller is responsible for providing the thrust requested by the pilot, while maintaining structural and operational constraints. Therefore, the strategies used to control the engine of an aircraft should be able to consider the constraints of the system in their structure. In this research, a multivariable model predictive controller based on a linear state space model for a turbofan engine is designed. This controller has the ability to accommodate various input and output constraints during supplying of required thrust. Due to the lack of matching between the linearized model for the controller and the nonlinear engine model, the feedback correction method is used in the control structure to improve the performance of the MPC controller. In this method, in addition to fuel as the main control input, bleed is also considered as an auxiliary control input for closed loop to reduce the possibility of compressor surge. In simulation, using a non-linear thermodynamic model, the controller performance is compared with the Min-Max method, our which is typically used to control aircraft engines. Results of this simulation show the effective performance of the proposed controller.

کلیدواژه‌ها [English]

  • Turbofan Engine
  • Model Predictive Control
  • Multi Input-Multi Output
  • Min-Max Controller
  1. Richter, H. “Advanced Control of Turbofan Engines”, Springer, New York, United States, 2012.
  2. Thompson, A., Hacker, J., and Cao, C. “Adaptive Engine Control in the Presence of Output Limits”, Aer. Int. Conf., Atlanta, United States, 2010.
  3. Nathan, G. “Intelligent Engine Systems-Adaptive Control”, NASA/CR-215240, 2008.
  4. May, R.D. and Garg, S. “Reducing Conservatism in Aircraft Engine Response, Using Conditionally Active Min-Max Limit Regulators”, NASA Glenn Research Center, Cleveland, Ohio, United States, 2012.
  5. Spang, H.A. and Brown, H. “Control of Jet Engines”, Control Eng. Pract., Vol. 7, No. 9, pp. 1043-1059, 1999.
  6. DeCastro, J.A., Litt, J.S., and Frederick, D.K. “A Modular Aero-Propulsion System Simulation of a Large Commercial Aircraft Engine”, Joint Propul. Conf. Exhibit., Hartford, Connecticut, United States, July, 2008.
  7. Jaw, L.C. and Mattingly, J.D. “Aircraft Engine Controls-Design, System Analysis and Health Monitoring”, American Institute of Aeronautics and Astronautics, AIAA, Virginia, United States, 2009.
    1. Litt, J., Frederick, D., and Guo, T.H. “The Case for Intelligent Propulsion Control for Fast Engine Response”, Aerosp. Int. Conf. Seattle, United States, 2009.
    2. Montazeri-Gh, M., Hosseini, S.M., and Imani. A. “Min-Max Controller Design for Double Shaft Unmixed Turbofan Engine’s Thermodynamic Model”, Aerosp. Mech. J., Vol. 15, No. 2, pp. 17-32, 2019 (In Persian).
    3. Imani, A., Montazeri, M., “Improvement of Min-Max Limit Protection in Aircraft Engine Control: An LMI Approach”, Aerosp. Sci. Tech., Vol. 68, pp. 214-222, 2017.
    4. Imani, A. and Montazeri, M. “A Min-Max Selector Controller for Turbofan Engines with Improvement of Limit Management and Low Computational Burden”, T. I. Meas. Control, Vol. 41, No.1, pp. 36-44, 2018.
    5. Mu, J. and Rees, D. “Approximate Model Predictive Control for Gas Turbine Engines”, American Control Conf., Boston, United States, 2004.
    6. Pandey, A. and Moroto, R. H. “Model Predictive Control for Gas Turbine Engines”, Turbomach. Tech. Conf. Expo., Arizona, United States, 2018.
      1. Brunell, B.J., Bitmead, R.R., and Connolloy, A.J. “Non-linear Model Predictive Control of an Aircraft Gas Turbine Engine”, Proc. 41stConf. Decision and Control, Miami, United States, 2002.
      2. Fuller, J.W., Kumar, A., and Millar, R.C. “Adaptive Model Based Control of Aircraft Propulsion Systems”, Turbomach. Tech. Conf. Expo., New York, United States, 2006.
      3. Decastro, J.A. “Rate-Based Model Predictive Control of Turbofan Engine Clearance”, J. Propul. Power, Vol. 23, pp. 804-813, 2007.
      4. Diwanji, V., Godbole, A., and Waghode, N., “Non-linear Model Predictive Control For Thrust Tracking of a Gas Turbine”, Int. Conf. Ind. Tech., Melbourne, Australia, 2006.
      5. Brunell, B.J., Viassolo, D.E., Prasanth R., “Model Adaptation and Non-linear Model Predictive Control of an Aircraft Engine”, Proc. Conf. ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, 2004.
        1. Aly, M.B. and Atia, A.I. “Neural Modeling And Predictive Control of a Small Turbojet Engine (SR-30)”, Int. Energy. Eng. Conf. Atlanta, United State, 2012.
          1. Saluru, C.D., Yedavalli, R.K., and Belapurkar, R.K. “Active Fault Tolerant Model Predictive Control of a Turbofan Engine Using C-Mapss40k”, Annu. Dyn. Syst. Control Conf., Florida, United State, 2012.
          2. Du, X., Guo, Y., and Sun, H. “An Adaptive Model Predictive Controller for Turbofan Engine”, American Journal of Engineering Research (AJER), Vol. 4, No. 12, pp. 170-176, 2015.
          3. Seok, J., Kolmanovsky, I., and Girard, A. “Coordinated Model Predictive Control of Aircraft Gas Turbine Engine and Power System”, J. Guid. Control Dyn., Vol. 40, No. 10, pp. 2538-2555, 2017.
        2. Imani, A. and Montazeri, M. “A Min–Max Multiregulator System with Stability Analysis for Aeroengine Propulsion Control”, ISA Trans., Vol. 85, pp. 84-96, 2018.
        3. Walsh, P.P. and  Fletcher, P. “Gas Turbine Performance”, Blackwell Science, U.K., 2004.
        4. Kulikov, G.G. and Thompson, H.A. “Dynamic Modelling of Gas Turbines: Identification, Simulation, Condition Monitoring and Optimal Control”, Springer; London, U.K., 2004.
        5. Kurzke, J. “GasTurb 10: A Program for Gas Turbine Performance Calculations”, User’s Manual, Germany, 2004.
        6. Montazeri-Gh, M. and Rasti Jahromi, A. “Analyzing Different Numerical Linearization Methods for the Dynamic Model of a Turbofan Engine”, Mech. Ind., Vol. 20, No. 3, 2019.
        7. Qin, S.J. and Badgwell, T.A. “A Survey of Industrial Model Predictive Control Tchnology”, Control Eng. Pract., Vol. 11, pp. 733-764, 2003.
        8. Zhang, X., XU, D. and LIU, Y. “Predictive Functional Control of a Doubly Fed Induction Generator for Variable Speed Wind Turbines”, Proc. 5th World Congress on Intelligent Control and Automation (WCICA), Hangzhou, China, June 15-19, 2004.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Li, S., Wang, J., Li, K., and Zhang, D. “Study on Robustness and Feasibility of MPC Based Vehicular Adaptive Cruise Control System”, World Congress on Intelligent Control and Automation (WCICA), Changsha, China, 2009.
  2. Simkoff, J.M., Wang, S., and Baldea, M. “Plant-Model Mismatch Estimation in Unconstrained State-Space MPC”, Am. Control Conf., Seattle, United States, 2017.