مطالعه عددی تأثیر سامانه پیشرانش بر مشخصه‌های آیرودینامیکی یک شناور اثر سطحی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی مالک اشتر

چکیده

هدف اصلی در این پژوهش، بررسی عددی تأثیر برهمکنش میان سامانه پیشرانش با بخش‌های اصلی یک شناور اثر سطحی می‌باشد. بنابراین، تأثیر پارامترهایی نظیر زاویه حمله شناور، جهت چرخش سامانه پیشرانش و تغییر مکان افقی و عمودی سامانه پیشرانش بر کیفیت آیرودینامیکی وسیله و در نهایت پایداری طولی شناور مطالعه شده است. با استفاده از نرم‌افزار ANSYS-CFX، الگوریتم سیمپل برای در نظر گرفتن کوپل میدان سرعت و فشار و همچنین با توجه به وجود جدایش جریان به‌منظور پیش‌بینی رفتار آشفتگی، مدل آشفتگی k-ω SST به کار گرفته شده است. اعتبارسنجی روش عددی مورد استفاده در این پژوهش توسط مقایسه نتایج شبیه‌سازی و داده‌های تجربی برای یک ملخ سه پره صورت پذیرفته است، که این مقایسه بیانگر دقت بالای روش عددی مورد استفاده است. نتایج نشان می‌دهد که جهت چرخش ملخ تأثیر چندانی بر کیفیت آیرودینامیکی وسیله نداشته و در زاویه حمله 3 درجه بالاترین کیفیت آیرودینامیکی به‌دست آمده است. همچنین در هنگام نزدیک شدن ملخ به خط مرکزی شناور، نیروی پسای دم افقی افزایش و نیروی برآ کاهش و در نهایت سبب ناپایداری طولی شناور شده و بالعکس در تغییر مکان عمودی ملخ به سمت پایین، نیروی پسای دم افقی کاهش و نیروی برآ افزایش یافته و پایداری طولی شناور نیز افزایش پیدا کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Study of the Propulsion System Effects on the Aerodynamic Characteristics of a WIG Craft

نویسندگان [English]

  • mostafa monfared
  • alireza binesh
  • Ali Abdollahifar
پژوهشگر
چکیده [English]

The main goal of this research is to study of interaction between the propulsion system and the WIG Craft main parts. Therefore, the effects of some parameters such as the propeller rotation direction and the propulsion system location on the aerodynamic quality of the WIG craft have been studied deeply. Using ANSYS-CFX Software, The SIMPLE algorithm has been utilized to consider the pressure-velocity coupling, additionally the k-ω SST model has been applied as a turbulence model to take the account of the flow separation. The numerical approach is verified by comparing its results with experimental data of a three-blade aerial propeller. These comparisons indicated that there was a good agreement between present numerical results and experimental ones. The results revealed that the propeller rotation direction has no significant effect on the aerodynamic quality of the WIG craft and at α=3o, the highest aerodynamic quality is achieved. Moreover, as the propulsion system approached closer to the WIG craft center line, the drag and lift forces on the horizontal tail are respectively enhanced and decreased, subsequently in this situation the longitudinal stability of the vehicle is decreased; whereas by changing the vertical position of the propulsion system, the drag and lift forces on the horizontal tail are correspondingly reduced and increased, Thus the longitudinal stability of the WIG craft is increased. 

کلیدواژه‌ها [English]

  • Propulsion System
  • WIG craft
  • Longitudinal Stability
  • Drag and Lift Forces
  • Horizontal Tail
  1. Bousquet J. M. and Gardarein, P. “Improvements on Computations of High Speed Propeller Unsteady Aerodynamics”, Aerospace Science and Technology. Vol. 7, pp. 465-472, 2003.##
  2. James,  L. T., John, W., Paulson, J., and Richard, J. M. “Powerd Low-Aspect-Ratio Wing-in-Ground-Effect (WIG) Aerodynamic Characteristics”, NASA- TM-78793, 1979.##
  3. Hirata, N. and Hino T. “Investigation of a Three-Dimensional Power-Augmented RAM Wing in Ground Effect”, 35th Aerospace Sciences Meeting and Exhibit, USA, 1997.##
  4. Kamyar, M. and Mohammadkhani, H. “Numerical Simulation Flow Around A Helicopter Rotor In Forward Fligth”; ISME,  Iran, 2002 (In Persian).##
  5. Javarshakian, M. H. and Saeedi, M. “Numerical Analysis of Aerodynamic Forces And Its Stresses on The Helicopter Rotor”, M.Sc Thesis, Tabriz University, Department of Mechanical Engineering, 2002 (In Persian).##
  6. Barber, T. “Aerodynamic Ground Effect: A Case Study of the Integration of CFD and Experiments”, Int. J. Vehicle Des., Vol. 40, no. 4, pp. 299-316, 2006.##
  7. Afshar, H. and Alishahi, M. H. “Numerical Investigation of Flow Around A WIG Craft In Free Fligth”; ISME,  Iran, 2004 (In Persian).##
  8. Shahramfar, V., Dehghan, M., and Kamali, J. “Aerodynamic Analysis of Flow Interaction Between Engine and Tail For a WIG Craft”, Proc. 15th Conf. Fluid Dymanic, Iran, 2012 (In Persian).##
  9. Tavakoli, M. and Seif, MS. “Static and Dynamic Stability Analysis of an WIG Craft Using Autowing Software”; Proc. 15th Conf. Marine Industries,  Iran, 2012 (In Persian).##
  10. Dakhrabadi, M. T. and Seif,  M. S. “Influence of Main and Outer Wings on Aerodynamic Characteristics of Compound Wing-in-Ground Effect”, Aerosp. Sci. Technol., Vol. 55, pp. 177-188, 2016.##
  11. Hwang, J. Y, Jung, M. K., and Kwon, O. J. “ Numerical Study of Aerodynamic Performance of a Multirotor Unmanned-Aerial-Vehicle Configuration”, J. Aircraft, AIAA Early Edition, Vol. 52, no. 3, pp. 839-846, 2015.##

 

 

 

 

 

 

 

 

 

  1. Jamei, S., Maimun, A., Mansor, S., Azwadi, N., and Priyanto, A., “Numerical Investigation on Aerodynamic Characteristics of Compound Wing-in-Ground Effect”, J. Aircraft, Vol. 49, no. 5, pp. 1297-1305, 2012.##
  2. Tahani, M., Bargestan, A., and Saboor, M. H. “Study on the Effects of Geometric Variation on the Aerodynamic and Static Stability Charectristics of a WIG Craft”, Journal of Solid And Fluid Mechanics, Vol. 4, pp. 75-78, 2013 (In Persian).##
  3. Heidarian, A., Ghassemi, H, and Liu, P. “Numerical Aerodynamic of the Rectangular Wing Concerning to Ground Effect”, American J. Mech. Eng., Vol. 6, no. 4, pp. 43-47, 2018.##
  4. Heidarian, A., Ghassemi, H., and Liu, P. “Investigation of The Effects of Micro-Riblet Film on the Wing In Ground Effect”, International J. Multidiciplinary Sci. & Eng., Vol. 9, no. 5, pp. 1-9, 2018.##
  5. Qin, Y., Liu, P, Qu, Q., and Zheng, Y. “Numerical Study of the Aerodynamic Forces and Flow Physics of the Delta Wing In Mutational Ground Effect”, Applied Aerodynamic Conference, Atlanta, Georgia, 2018.##
  6. Lee, J. “Computational Analysis of Static Height Stability and Aerodynamics of Vehicles With a Fuselage, Wing And Tail Ground Effect”, Ocean Eng., Vol. 168, pp. 12-22, 2018.##
  7. Lao, C. T. and Wong, T. T. “CFD Simulation of a Wing in Ground Effect UAV”, Proc. IOP Conf. Series, Material Science and Engineering, Vol. 370, no. 1, 2018.##
  8. Wei, H., Yu, P., and Li, L. “Ground Effects in the Stability of the Separated Flow Around NACA 4415 Airfoil at Low Reynolds Numbers”, Aerospace Science and Tecnology, Vol. 72, pp. 63-76, 2018.##
  9. Ansys Cfx-Solver Theory Guide, (2017), ANSYS, INC.##
  10. Aerodynamic Characteristics of a Three Blade Propeller Having NACA 10-(3) (08)-03 Blades”,  NASA Technical Reports Server, 1948.##