شبیه‌سازی عددی انتقال حرارت مزدوج نانوسیال در میکروکانال دوبعدی تحت تأثیر میدان مغناطیسی عرضی: تأثیر قطر نانوذره، عدد رینولدز و اتلاف ویسکوز

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه صنعتی نوشیروانی بابل

چکیده

در­­مقاله­ حاضر اثر اتلاف لزج بر روی جریان و انتقال حرارت مزدوج نانو سیال آب- آلومینا در ­یک میکروکانال دوبعدی که تحت تأثیر میدان مغناطیسی یکنواخت قراردارد، با استفاده از روش شبکه‌ بولتزمن تراکم­ناپذیر بررسی می­شود. دیوار بالایی میکروکانال عایق است و­ شار حرارتی ثابت به دیوار پایینی در منطقه جامد اعمال می‌شود. این مسئله در اعداد رینولدز 50، 75 و 100، نانوسیال با کسر حجمی 2%، قطر نانوذرات 10 تا 50 نانومتر و اعداد هارتمن 0 تا 30 بررسی شده است.نتایج نشان­ دادند،در شرایط صرف‌نظر کردن از اتلاف لزج، استفاده از میدان مغناطیسی در انتقال حرارت مزدوج، نه تنها تأثیر منفی بر عددناسلت میانگین ندارد،بلکه می­تواند آن را به‌ویژه در اعداد رینولدز بالاتر افزایش دهد. همچنین می­توان ذکر کرد که عدد ناسلت میانگین در حالت در نظر نگرفتن اثر اتلاف لزج بیشتر از حالت اعمال ترم اتلاف لزج است به‌طوری‌که بیشترین مقدار عدد ناسلت دراین حالت، در عدد رینولدز 100 و عدد هارتمن 30 مشاهده می­شود. 

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of Nanofluid Conjugate Heat Transfer in 2D Microchannel under the influence of Transverse Magnetic Field: influence of Nanoparticle Diameter, Reynolds Number and viscous dissipation

نویسندگان [English]

  • Fatemeh Besharati
  • Omid Jahanian
Babol Noshirvani University of Technology
چکیده [English]

In the present study, the effect of viscousdissipation on the flow and conjugate heat transfer of water-alumina nanofluid in a two-dimensional microchannel under the influence of a magnetic field is investigated, using the incompressible lattice Boltzmann method.The upper wall of the microchannel is insulated and uniform heat flux is imposed on the lower wall of the solid region. The investigation has been carried out at Reynolds numbers of 50, 75 and 100, for a nanofluid with 2% volume fraction. The nanoparticle diameters varied from 10 to 50 nm and variable Hartmann numbers ranging from 0 to 30 were considered. The results showed that in the case of ignoring viscous dissipations, using a magnetic field in conjugate heat transfer does not have a significant negative effect on the average Nusselt number, and despite the usual expectation, can increase the Nusselt number, especially at higher Reynolds numbers. It is also noted that the average Nusselt number when ignoring the viscous dissipations, is higher than when these dissipations are taken into account. Hence, the highest Nusselt number in this case, is observed at Reynolds and Hartmann number values of 100 and 30, respectively.

کلیدواژه‌ها [English]

  • Lattice Boltzmann method
  • Conjugate Heat Transfer
  • Nanofluid
  • Magnetic Field
  • Viscous Dissipations
  1. Akbarinia, A., Abdolzadeh, M., and Laur, R. “Critical Investigation of Heat Transfer Enhancement using Nanofluids in Microchannels with Slip and Non-slip Flow Regimes”, Appl. Therm. Eng., Vol. 31, no. 4, pp. 556-565, 2011.##
  2. Wang, J., Wang, M., and Li, Z. “A Lattice Boltzmann Algorithm for Fluid–Solid Conjugate Heat Transfer”, Appl. Therm. Eng., Vol. 46, no. 3, pp. 228-234, 2007.##
  3. Toh, K.C., Chen, X.Y., and Chai, J.C. “Numerical Computation of Fluid Flow and Heat Transfer in Microchannels”, Int. J. Heat Mass TRAN, Vol. 45, No. 26, pp. 5133-5141, 2002.##
  4. Ramiar, A. and Ranjbar, A.A. “The Effect of Viscous Dissipation and Variable Properties on Nanofluids Flow in Two Dimensional Microchannels”, Int. J. Engineering-Transactions A, Vol. 24, no. 2, pp. 131-142, 2011.##
  5. Kandlikar, S. G., Garimella, S., Li, D., Colin, S. and King, M. R. “Heat Transfer and Fluid Flow in Minichannels and Microchannels”, second ed, Elsevier, UK, 2014.##
  6. Tuckerman, D. B. and Pease, R. F. W. “High Performance Heat Sinking for VLSI”, IEEE Electron device letters, Vol. 2, no. 5, pp. 126-129, 1981.##
  7. Amani, j. and Arani, A. A. A. “ Experimental Study on Heat Transfer and Pressure Drop of TiO2-Water Nanofluid” Amirkabir Journal of Science and Research (Mechanical Engineering), Vol. 46, no. 1, pp. 79-80, 2014. (in Persian).##
  8. Heris,­­ S., Edalati, Z., and Noie, S. H. “The Comparison between Al2O3/Water and Cuo/Water Nanofluids Experimental Heat Transfer Performance inside Triangular Duct”, Amirkabir Journal of Science and Research (Mechanical Engineering), Vol. 47, no. 1, pp. 91-99, 2015. (in Persian).##
  9. Esfe, M. H., Ghadi, A. Z. and Noroozi, M. J. “Numerical Simulation of Mixed Convection within Nanofluid-Filled Cavities with Two Adjacent Moving Walls”, T. Can. Soc. Mech. Eng., Voi. 37, no. 4, pp. 1073-1089, 2013.##
  10. Esfe, M. H., Akbari, M. and Karimipour, A. “Mixed Convection in a Lid-Driven Cavity with an inside Hot Obstacle Filled by an Al2O3- Water Nanofluid”, J. Appl. Mech. Tech. Phy., Vol. 56, No. 3, pp. 443-453, 2015##
  11. Sarafraz, M. M., Nikkhah, V., Nakhjavani, M., and Arya, A. “Thermal Performance of a Heat Sink Microchannel Working with Biologically Produced Silver-Water Nanofluid: Experimental Assessment”, J. Therm. Anal. Calorim., Vol. 131, No. 3, pp. 2865-2884, 2018.##
  12. Esfe, M.H., Arani, A.A.A., Niroumand, A.H., Yan, W.M., and Karimipour, A. “Mixed Convection Heat Transfer from Surface-Mounted Block Heat Sources in a Horizontal Channel with Nanofluids”, Int. J. Heat Mass. Tran., Vol. 89, pp. 783-791, 2015.##
  13. Esfe, M.H., Arani, A.A., Azizi, T., Mousavi, S.H., and Wongwises, S. “Numerical Study of Laminar Forced Convection of Al2O3-Water Nanofluids between Two Parallel Plates”, J. Mech. Sci. Technol., Vol. 31, No. 2, pp. 785-796, 2017.##
  14. Fereidoon, A., Saedodin, S., Esfe, M.H., and Noroozi, M.J. “Evaluation of Mixed Convection in Inclined Square Lid-Driven Cavity Filled with Al2O3/Water Nanofluid”, Eng. Appl. Comp. Fluid, Vol. 7, No. 1, pp. 55-65, 2013.##
  15. Esfe, M.H., Abbasian Arani, A.A., Rezaee, M., Yazdeli, R.D., and Wongwises, S. “An Inspection of Viscosity Models for Numerical Simulation of Natural Convection of Al2O3-Water Nanofluid with Variable Properties”, Curr. Nanosci., Vol. 13, No. 5, pp. 449-461, 2017.##
  16. Esfe, M.H., Abbasian Arani, A.A., Aghaie, A., and Wongwises, S. “Mixed Convection Flow and Heat Transfer in an Up-Driven, Inclined, Square Enclosure Subjected to DWCNT-Water Nanofluid Containing Three Circular Heat Sources”, Curr. Nanosci., Vol. 13, No. 3, pp. 311-323, 2017.##
  17. Salari, M., Malekshah, E.H., Esfe, M.H. “Three Dimensional Simulation of Natural Convection and Entropy Generation in an Air and MWCNT/Water Nanofluid Filled Cuboid as Two Immiscible Fluids with Emphasis on the Nanofluid Height Ratio''s Effects”, J. Mol. Liq., Vol. 227, pp. 223-233, 2017.##
  18. Esfe, M.H., Nadooshan, A.A., Arshi, A., and Alirezaie, A. “Convective Heat Transfer and Pressure Drop of Aqua Based TiO2 Nanofluids at Different Diameters of Nanoparticles: Data Analysis and Modeling with Artificial Neural Network”, Physica. E., Vol. 97, pp. 155-161, 2018.##
  19. Kalteh, M., Abbassi, A., Saffar-Avval, M., and Harting, J. “Eulerian–Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel”, Int. J. Heat. Fluid Fl., Vol. 32, No. 1, pp. 107-116, 2011.##
  20. Kalteh, M. “Investigating the Effect of Various Nanoparticle and Base Liquid Types on the Nanofluids Heat and Fluid Flow in a Microchannel”, Appl. Math. Model, Vol. 37, no. 18-19, pp. 8600-8609, 2013.##
  21. Kalteh, M., Javaherdeh, K., and Azarbarzin, T. “Numerical Solution of Nanofluid Mixed Convection Heat Transfer in a Lid-Driven Square Cavity with a Triangular Heat Source”, Powder Technol., Vol. 253, pp. 780-788, 2014.##
  22. Fani, B., Kalteh, M., and Abbassi, A. “Investigating the Effect of Brownian Motion and Viscous Dissipation on the Nanofluid Heat Transfer in a Trapezoidal Microchannel Heat Sink”, Advanced Powder Technol., Vol. 26, no. 1, pp. 83-90, 2015.##
  23. Shahriari, A., Javaran, E. J., and Rahnama, M. “Effect of Nanoparticles Brownian Motion and Uniform Sinusoidal Roughness Elements on Natural Convection in an Enclosure”, J. Therm. Anal. Calorim., Vol. 131, no. 3, pp. 2865-2884, 2018.##
  24. Sheikholeslami, M., and Rokni, H. B. “Simulation of Nanofluid Heat Transfer in Presence of Magnetic Field: A Review”, Int. J. Heat Mass TRAN, Vol. 115(Part B), pp. 1203-1233, 2017.##
  25. M''hamed, B., Sidik, N.A.C., Yazid, M.N.A.W.M., Mamat, R., Najafi, G., and Kefayati, G.H.R. “A Review on Why Researchers Apply External Magnetic Field on Nanofluids”, Int. Commun. Heat. Mass. Vol. 78, pp. 60-67, 2016.##
  26. Sawada, T., Tanahashi, T., and Ando, T. “Two-Dimensional Flow of Magnetic Fluid between Two Parallel Plates”, J. Magn. Magn. Mater., Vol. 65, No. 2-3, pp. 327-329, 1987.##
  27. Kalteh, M., and Abedinzadeh, S.S. “Numerical Investigation of MHD Nanofluid Forced Convection in a Microchannel using Lattice Boltzmann Method”, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Vol. 42, no. 1, pp. 23-34, 2018. (in Persian).##
  28. Duwairi, H., and Abdullah, M. “Thermal and Flow Analysis of a Magnetohydrodynamic Micropump”, Microsyst. Technol., Vol. 13, no. 1, pp. 33-39, 2007.##
  29. Aminossadati, S.M., Raisi, A., and Ghasemi, B. “Effects of Magnetic Field on Nanofluid Forced Convection in a Partially Heated Microchannel”, Int. J. Nonlin. Mech., Vol. 46, no. 10, pp. 1373-1382, 2011.##
  30. Agheai, A., Khorasanizadeh, H., and Sheikhzadeh, GhA. “Investigation of Laminar and Turbulent Natural Convection of Nanofluid Trapezoidal Enclosure under the Influence of Magnetic Field”, Aerospace Mechanics Journal. Vol. 15, No. 2, pp. 53-66, 2019. ( in persian).##
  31. Jamalabadi, M. A., and Park, J.H. “Thermal Radiation, Joule Heating, and Viscous Dissipation Effects on MHD Forced Convection Flow with Uniform Surface Temperature”, Open Journal of Fluid Dynamics, Vol. 4, no. 2, p. 125, 2014.##
  32. Khandekar, S., and Moharana, M.K. “Axial Back Conduction through Channel Walls during Internal Convective Microchannel Flows”, Nanoscale and Microscale Phenomena: Fundamentals and Applications. New Delhi, India, pp. 335-369, 2015.##
  33. Knupp, D.C., Naveira-Cotta, C.P. , and Cotta, R.M. “Theoretical Analysis of Conjugated Heat Transfer with a Single Domain Formulation and Integral Transforms”, Int. Commun. Heat Mass Transfer, Vol. 39, No. 3, pp. 355-362, 2012.##
  34. Cole, K.D., and Çetin, B. “The Effect of Axial Conduction on Heat Transfer in a Liquid Microchannel Flow”, Int. J. Heat Mass Tran., Vol. 54, no. 11-12, pp. 2542-2549, 2011.##
  35. Azad, A.K., Rahman, M.M., and Öztop, H.F. “Effects of Joule Heating on Magnetic Field inside a Channel along with a Cavity”, Procedia Engineer., Vol. 90, pp. 389-396, 2014.##
  36. Yang, Y.T., and Lai, F.H. “Lattice Boltzmann Simulation of Heat Transfer and Fluid Flow in a Microchannel with Nanofluids’’, J. Heat mass transfer, Vol. 47, no. 10, pp. 1229-1240, 2011.##
  37. Tretheway, D.C., and Meinhart, C.D. “Apparent Fluid Slip at Hydrophobic Microchannel Walls”, Phys. Fluids, Vol. 14, no. 3, pp. 9-12, 2002.##
  38. Ngoma, G.D., and Erchiqui, F. “Heat Flux and Slip Effects on Liquid Flow in a Microchannel”, Int. J. Thermal Sciences, Vol. 46, no. 11, pp. 1076-1083, 2011.##
  39. Mehrizi, A.A., Farhadi, M., Sedighi, K., and Delavar, M.A. “Effect of Fin Position and Porosity on Heat Transfer Improvement in a Plate Porous Media Heat Exchanger”, J. Taiwan. Inst. Chem. E, Vol. 44, no. 3, pp. 420-431, 2013.##
  40. Afrouzi, H.H., Sedighi, K., Farhadi, M., and Fattahi, E. “Dispersion and Deposition of Microparticles over Two Square Obstacles in a Channel via Hybrid Lattice Boltzmann Method and Discrete Phase Model”, Int. J. Eng. ,Vol. 25, no. 3, pp. 266-257, 2012.##
  41. Afrouzi, H.H., Farhadi, M. , and Mehrizi, A.A. “Numerical Simulation of Microparticles Transport in a Concentric Annulus by Lattice Boltzmann Method”, Adv. Powder Technol., Vol. 24, no. 3, pp. 575-584, 2013.
  42. Afrouzi, H.H., Sedighi, K., Farhadi, M., and Moshfegh, A. “Lattice Boltzmann Analysis of Microparticles Transport in Pulsating Obstructed Channel Flow”, Computers and Mathematics with Applications, Vol. 70, Nno. 5, pp. 1136-1151, 2015.## ‏
  43. Pourmirzaagha, H., Afrouzi, H.H., and Mehrizi, A.A. “Nanoparticles Transport in a Concentric Annulus: a Lattice Boltzmann Approach”, J. Theor. App. Mech-Pol., vol. 53, no. 3, pp. 683-695, 2015.##‏
  44. Mehrizi, A.A., Farhadi, M., Afroozi, H.H., Sedighi, K., and Darz, A.R. “Mixed Convection Heat Transfer in a Ventilated Cavity with Hot Obstacle: Effect of Nanofluid and Outlet Port Location”, Int. Commun. Heat Mass Transfer, Vol. 39, No. 7, pp. 1000-1008, 2012.##
  45. Tilehboni, S.M., Fattahi, E., Afrouzi, H.H., and Farhadi, M. “Numerical Simulation of Droplet Detachment from Solid Walls under Gravity Force using Lattice Boltzmann Method”, J. Molecular Liquids, Vol. 212, pp. 544-556, 2015.##
  46. Arumuga Perumal, D., and Dass, A.K. “A Review on the Development of Lattice Boltzmann Computation of Macro Fluid Flows and Heat Transfer”, Alexandria Engineering Journal, Vol. 54, No. 4, pp. 955-971, 2015.##
  47. Karimipour, A., Nezhad, A.H., D’Orazio, A., Esfe, M.H., Safaei, M.R., and Shirani, E. “Simulation of Copper–Water Nanofluid in a Microchannel in Slip Flow Regime using the Lattice Boltzmann Method”, Eur. J. Mech. B-Fluid, Vol. 49, pp. 89-99, 2015.##
  48. Karimipour, A., Esfe, M.H., Safaei, M.R., Semiromi, D.T., Jafari, S., and Kazi, S.N. “Mixed Convection of Copper–Water Nanofluid in a Shallow Inclined Lid-Driven Cavity using the Lattice Boltzmann Method”, Physica. A., Vol. 402, pp. 150-168, 2014.##
  49. Meng, F., Wang, M., and Li, Z. “Lattice Boltzmann Simulations of Conjugate Heat Transfer in High-Frequency Oscillating Flows”, Int. J. heat and fluid flow, Vol. 29, No. 4, pp. 1203-1210, 2008.##
  50. Seddiq, M., Maerefat, M., and Mirzaei, M. “Modeling of Heat Transfer at the Fluid–Solid Interface by Lattice Boltzmann Method”, Int. J. Thermal Sciences, Vol. 75, pp. 28-355, 2014.##
  51. Hu, Y., Li, D., Shu, S., and Niu, X. “Simulation of Steady Fluid–Solid Conjugate Heat Transfer Problems via Immersed Boundary Lattice Boltzmann Method”, Computers and Mathematics with Applications, Vol. 70, No. 9, pp. 2227-2237, 2015.##
  52. Le, G., Oulaid, O., and Zhang, J. “Counter Extrapolation Method for Conjugate Interfaces in Computational Heat and Mass Transfer”, Phys. Rev. E., Vol. 91, No. 3, pp. 556-565, 2011.##    
  53. Mozafari Shamsi ,M., Sefid ,M., and Imani ,Gh. “New Formulation for the Simulation of the Conjugate Heat Transfer at the Curved Interfaces Based on the Ghost Fluid Lattice Boltzmann Method”, Numer. Heat. Transf. Part B, Vol. 70, No. 6, pp. 559-576, 2016.##
  54. Chatterjee, D., and Amiroudine, S. “Lattice Boltzmann Simulation of Thermofluidic Transport Phenomena in a DC Magnetohydrodynamic (MHD) Micropump”, Biomedical Microdevices, Vol. 13 No. 1, pp. 147-157, 2011.##
  55. Morini, G.L. “Viscous Heating in Liquid Flows in Microchannels”, Int. J. Heat Mass Tran., Vol. 48, No. 17, pp. 3637-3647, 2005.##
  56. Hung, Y.M. “Analytical Study on Forced Convection of Nanofluids with Viscous Dissipation in Microchannels”, Heat Transfer Engineering, Vol. 31, No. 14, pp. 1184-1192, 2010.##
  57. Kalteh, M., Abbassi, A., Saffar-Avval, M., Frijns, A., Darhuber, A., and Harting, J. “Experimental and Numerical Investigation of Nanofluid Forced Convection inside a Wide Microchannel Heat Sink”, Appl. Therm. Eng., Vol. 36, pp. 260-268, 2012.##
  58. Corcione, M. “Heat Transfer Features of Buoyancy-Driven Nanofluids inside Rectangular Enclosures Differentially Heated at the Sidewalls. Int. J. Thermal Sciences, Vol. 49, No. 9, pp. 1536-1546,2010.##
  59. Chon, C.H., Kihm, K.D., Lee, S.P., and Choi, S.U. “Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement”, Appl. Phys. Lett., Vol. 87, No. 15, pp. 107-153, 2005.##
  60. Guo, Z., Zheng, C., and Shi, B. “Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method”, Phys. Rev. E., Vol. 65, No. 4, pp. 556-565, 2002.##
  61.  Guo, Z., Zhao, T.S., and Shi, Y. “Preconditioned Lattice Boltzmann Method for Steady Flows”, Phys. Rev. E., Vol. 70, No. 6, pp. 66-706, 2004.##
  62. Karimipour, A., Taghipour, A., & Malvandi, A. “Developing the Laminar MHD Forced Convection Flow of FMWNT/Water Carbon Nanotubes in a Microchannel Imposed the Uniform Heat Flux”, J. Magn. Magn. Mater, Vol. 419, pp. 420-428, 2016.##
  63. Izquierdo, S., Fueyo, N. “Optimal Preconditioning of Lattice Boltzmann Methods”, J. Comput. Phys., Vol. 228, no. 17, pp. 6479-95, 2009.##
  64. Bin, D., Bao-Chang, S., and Guang-Chao, W. “A New Lattice Bhatnagar–Gross–Krook Model for the Convection–Diffusion Equation with a Source Term”, Chinese Phys. Lett., Vol. 22, no. 2, pp. 267-270, 2005.##
  65. Zarita, R., and Hachemi M. “Microchannel Fluid Flow and Heat Transfer by Lattice Boltzmann Method”, In: 4th Micro and Nano Flows Conf. UCL, London, UK, 2014.##
  66. D’Orazio, A., and Succi, S. “Boundary Conditions for Thermal Lattice Boltzmann Simulations”, Int. Conf. Computational Science. Springer, Berlin, Heidelberg, p. 977–986, 2003.##‏
  67. Lalami, A.A., and Kalteh, M. “Lattice Boltzmann Simulation of Nanofluid Conjugate Heat Transfer in a Wide Microchannel: Effect of Temperature Jump, Axial Conduction and Viscous Dissipation”, Meccanica, Vol. 54, no. 1-2, pp. 135-153, 2019.##
  68. Bejan, A. “Convection Heat Transfer”, John wiley and sons, Inc, New York, 2013.##