نوع مقاله : مقاله پژوهشی
نویسندگان
گروه مهندسی مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
The propulsive force in an unmanned aerial vehicle is usually produced by propellers and the UAVs require maximum propulsive force and minimum drag force to perform various operations. The aircraft's performance is influenced by the spinner shape; therefore, accurate analysis of its aerodynamic shape can improve the performance. In this research, the aerodynamic design of the spinner and the geometric parameters effective on the UAV performance are mentioned. The ultimate goal is to use an optimized spinner for dual-propeller UAVs. Initially, the effect of spinner geometry on the aerodynamic features of the pusher propeller is investigated. Then, a numerical simulation based on computational fluid dynamics is done and the outcomes for both the presence and the absence of spinner are compared. In the numerical simulations, the flow field is considered as three-dimensional, unsteady and turbulent, and these results are compared with the published data for verification of the numerical procedure. The research's motivation is to improve five design variables in the design of pusher propeller spinner namely, (the radius of reference plane), (the reference length), (the gap between the spinner and cowling), (the reference slope angle), and (the slope angle of spinner cap) and to provide solutions to select the appropriate spinner by an efficient method such as the Taguchi method. This process is followed in such a way as to achieve the desired propeller performance as an objective function. Eventually, the optimum spinner which achieves improved performance, increased propeller propulsion efficiency and declined fuselage drag force is obtained.
کلیدواژهها [English]