استفاده از محاسبات نرم در شبیه‌سازی جریان‌های رسوبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده مهندسی، دانشگاه آزاد اسلامی ، نجف آباد، ایران

2 گروه مهندسی علوم آب، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

جریان­های غلیظ از مهم‌ترین عوامل در کاهش عمر مفید سازه­های آبی بخصوص سدهای مخزنی می­باشند، بر این ­اساس محققین همواره به دنبال راهکارهایی جهت حذف این جریان­ها و افزایش عمرمفید سدها بوده­اند. یکی از کاربردی­ترین روش­های شناخته شده، ساخت مانع
در مسیر این جریان­ها می­باشد. در این تحقیق آزمایشگاهی_عددی اثر مانع نفوذ­پذیر ذوزنقه­ای شکل (پر شده با دانه­های شن با قطر نیم سانتی­متر) بر هد جریان غلیظ و با در نظر گرفتن متغیرهایی همچون دبی، غلظت، شیب و ارتفاع مانع مورد ارزیابی قرار گرفته شد. بر اساس مقادیر درصد کاهش هد جریان غلیظ به‌دست‌آمده از آزمایش­ها، اقدام به مدل­سازی هد جریان غلیظ نمکی با روش نرم، سامانه استنتاج عصبی_ فازی تطبیقی (انفیس) شده و سپس با مقایسه نتایج آن با روش کلاسیک رگرسیون چند متغیره، کارکرد این دو روش مورد مقایسه قرار گرفته است. نتایج نشان داد که میزان خطا انفیس برای داده­های آموزشی، اعتبارسنجی و تست به‌ترتیب 0.07، 0.033 و 0.03 و برای روش رگسیون چند متغیره به‌ترتیب 0.12 ،0.199 و 0.1084 بوده است همچنین مقادیر رگسیون آموزش و تست برای سامانه انفیس 0.9954 و 0.9652 بوده و برای روش کلاسیک رگرسیون چند متغیره0.93108 و 0.90396 بوده است که نشان از برتری کارایی سامانه انفیس در مدل­سازی داده­های هد دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The application of soft computing in the simulation of sediment flows

نویسندگان [English]

  • Mehdi derakhshannia 1
  • Saeid Eslamian 1
  • Mehdi Ghoshi 2
  • Seyed Mahmood Kashefipour 2
1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Department of Water Sciences Engineering, College of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

Density flows are one of the most important factors in reducing the useful life of water structures, especially reservoir dams. Therefore, researchers have always been investigating solutions to eliminate these flows and increase the useful life of dams. One of the most practical methods known is to build an obstacle in the path of these currents. In this laboratory-numerical study, the effect of trapezoidal permeable obstacle (filled with 0.5 cm diameter grains) on the head of density flow is investigated and the effects of variables such as discharge, concentration, slope and height of the obstacle are studied. Based on the percentage reduction of the density flow head obtained from the experiments, the concentrated salt flow head is modeled using one of the soft computing methods known as the adaptive neural-fuzzy inference system (Anfis). Then, by comparing the results with the classical multivariable regression method, the performance of these two methods is compared. The error of training, validation and test data for the Anfis method are shown to be 0.07, 0.033 and 0.03, respectively, while for the multivariable regression method the mentioned errors are shown to be 0.12, 0.199 and 0.1084, respectively. Also, regression values for the training and test data for the Anfis method, are found to be 0.9954 and 0.9652 respectively whilst for the multivariable regression method, the mentioned parameters are shown to be 0.93108 and 0.90396 respectively which demonstrates the superiority and the efficiency of the adaptive neural-fuzzy inference system in modeling the head data.

کلیدواژه‌ها [English]

  • Density Flow
  • Sedimentation
  • Head Reduction Percentage
  • Adaptive Neural-Fuzzy Inference System
  • Multivariate Regression
  1. Lowe, D. R. “Sediment Gravity Flows; II, Depositional Models with Special Reference to the Deposits of High-Density Turbidity Currents”, J. Sediment. Res., Vol. 52, pp. 279–297, 1982.##
  2. Baas, J. H., McCaffrey, W. D., Haughton, P. D., and Choux, C. “Coupling between Suspended Sediment Distribution and Turbulence Structure in a Laboratory Turbidity Current”, J. Geophys. Res., Vol. 110, pp. 1–20, 2005.##
  3. Oehy, C. D. and Schleiss, A. J. “Control of Turbidity Currents in Reservoirs by Solid and Permeable Obstacles”, J. Hydraul. Eng., Vol. 133, pp. 637–648, 2007.##
  4. Jenzer Althaus, J., De Cesare, G., Boillat, J., and Schleiss, A. “Turbidity Currents at the Origin of Reservoir Sedimentation, case studies”, 23rd Congress of the International Commission on Large Dams , Brasilia, 2009.##
  5. Nasrollahpour, R. and Ghomeshi, M. “Effect of Roughness Geometry on Characteristics of Density Currents Head”, Indian J. Sci. Technol, Vol. 5, pp. 3783–3787, 2012.##
  6. Oshaghi, M. R., Afshin, H., and Firoozabadi, B. “Experimental Investigation of the Effect of Obstacles on the Behaviour of Turbidity Currents”, Can. J. Civ. Eng., Vol. 40, No. 4, pp. 343–352, 2013.##
  7. Ghorbani, Z., Khozeymehnezhad, H., and Ramezani, Y. “Laboratory Investigation of the Parameters of the Submerged Plates on the Turbidity Currents Characteristics”, J. hydraul. struct. , Vol. 6, No. 4, pp. 16-32, 2020.##
  8. Baghalian, S. and Ghodsian, M. “Experimental Study 0n the Effects Of Artificial Bed Roughness On Turbidity Currents Over Abrupt Bed Slope change”, Int. J. Sediment Res., Vol. 35, No.5, pp. 256-268, 2020.##
  9. De Cesare, G., Oehy, C. D., and Schleiss, A. J. “Experiments on Turbidity Currents Influenced by Solid and Permeable Obstacles and Water Jet Screens”, 6th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering, pp. 41–44. Czech Technical University in Prague-Institute of Hydrodynamics AS CR, 2008.##
  10. Kubo, Y. “Experimental and Numerical Study of Topographic Effects on Deposition from Two-Dimensional, Particle-driven Density Currents”, Sediment. Geol., Vol. 164, pp. 311–326, 2004.##
  11. Oehy, C. “Effects of Obstacles and Jets on Reservoir Sedimentation Due to Turbidity Currents”, Unpublished doctoral dissertation, EPFL, LCH, Lausanne, Switzerland, 2003.##
  12. Zhang, Q. and Stanley, S.J. “Real-time Water Treatment Process Control with Artificial Neural Networks”, J Environ Eng, Vol. 125, No. 2, pp.153-160, 1999.##
  13. Beaudeau, P., Leboulanger, T., Lacroix, M., Hanneton, S., and Wang, H.Q. “Forecasting of Turbid Floods in a Coastal, Chalk Karstic Drain Using an Artificial Neural Network”, Ground Water, Vol.39, No.1 , p. 109, 2001.##
  14. Aligoodarz, M., Mehrpanahi, A., and Karrabi, H. “One-dimensional Modeling of an Axial Turbine to Investigate the Effect of Blade Tolerances on Efficiency”, Bi-Quarterly J. Fluid Mechanics and Aerodynamics, Vol. 5, No. 2, pp. 15-28, 2017, (in persian).##
  15. Goodarzi, D., Lari, K. S., Khavasi, E., and Abolfathi, S. “Large Eddy Simulation of Turbidity Currents in a Narrow Channel with Different Obstacle Configurations”, Sci. Rep., Vol. 10, pp. 1-16, 2020.##
  16. Hu, P. and Li, Y. “Numerical Modeling of the Propagation and Morphological Changes of Turbidity Currents Using a Cost-saving Strategy of Solution Updating”, Int. J. Sediment Res., Vol. 35, pp. 587-599, 2020.##
  17. Asghari Pari, S. A., Kashefipour, S., Ghomeshi, M. and Bajestan, M. S. “Effects of Obstacle Heights on Controlling Turbidity Currents with Different Concentrations and Discharges”, J. Food Agric Environ., Vol. 8, pp. 930–935, 2010.##
  18. Jang, J-SR. “Input Selection for ANFIS Learning”, Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, September 8–11, Vol. 2, pp. 1493–1499, 1996.##
  19. Takagi, T. and Sugeno, M. “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Trans. Syst. Man. Cybern., 1, pp. 116–132, 1985.##
  20. Jang, J-SR. “ANFIS: Adaptive-network-based Fuzzy Inference System”, IEEE Trans. Syst. Man. Cybern., Vol. 23, No. 3, pp. 665–685, 1993.##
  21. Bishop, C.M. “Pattern Recognition and Machine Learning”, Springer, 2006.##
  22. Kochenderfer, M.J. and Wheeler, T.A.. “Algorithms for Optimization”, Mit Press, 2019.##