بررسی اثر شکل جداکننده‌های بین آند و کاتد در باتری Al-AgO بر روی هیدرودینامیک جریان الکترولیت آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترا مهندسی مکانیک، دانشکده و پژوهشکده فنی- مهندسی، دانشگاه جامع امام حسین (ع) ، تهران ، ایران

2 کارشناس ارشد مهندسی سیستم های انرژی، دانشگاه شهید بهشتی ، تهران، ایران

چکیده

باتری‌های الکتروشیمیایی جریانی همچون باتری Al-AgO ، از جمله باتری‌های با ظرفیت بالا هستند که در آن‌ها الکترولیت بین صفحات آند و کاتد جریان داشته و سلول باتری در مسیر یک سیستم چرخشی بسته قرار دارد. با توجه به سنگین بودن اینگونه باتری‌ها، تلاش‌هایی در جهت کاهش حجم و وزن آن‌ها تاکنون انجام شده و معمولا فاصله بین آند و کاتد در حداقل مقدار تنظیم می‌شود. از طرفی نزدیک شدن بیش از حد آند و کاتد، خطر اتصال کوتاه داخلی در باتری را افزایش می‌دهد. بنابراین از جداکننده‌هایی بین صفحات آند و کاتد استفاده شده که مانع از برخورد آن‌ها با یکدیگر شوند. جداکننده‌ها با وجود جلوگیری از اتصال کوتاه، در مسیر جریان الکترولیت قرار داشته و مانع از حرکت مطلوب آن بین صفحات آند و کاتد می‌شوند. دنباله جریان ناشی از ممانعت آن‌ها بر مسیر جریان، از سطح فعال واکنش می‌کاهد و این رخداد باعث کاهش عملکرد و بازده باتری می گردد. به همین منظور در بررسی عددی حاضر، جریان الکترولیت در سل باتری بصورت تک‌فاز و پایا در نظر گرفته شده و بر روی اثر تعداد و نحوه چینش جداکننده‌ها با چهار شکل سطح مقطع دایره، مربع، لوزی و مثلث مطالعه و سطح فعال واکنش در هر یک بررسی شده است

کلیدواژه‌ها


Smiley face

  1. Chen, R., Kim, S., and Chang, Z.,” Redox Flow Batteries: Fundamentals and Application”, Chapter: 5, Publisher: InTech , 2017.
  2. Thaller, L.H. and Ohio, S. “Electrically Rechargeable Redox Flow Cell”, United States Patent, 1975.
  3. Anderson, G.E.and Middletown, R.I. “Al-AgO Primary Battery”, United States Patent, 1975.
  4. Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T.and Liu,Q. “Redox flow Batteries: a Review”, J. Appl. Electrochem, Vol. 41, pp.1137–1164, 2011.
  5. Arenas, L.F., de León, P., Frank, C., and Walsh, C. “Redox Flow Batteries for Energy Storage: Their Promise, Achievements and Challenges, Current Opinion in Electrochemistry”, Vol. 16, pp. 117–126, 2019.
  6. Choi, C., Kim, S., Kim, R., Choi, Y., Kim, S., Jung, H., Hoon Yang, J., and Kim, H. “A Review of Vanadium Electrolytes for Vanadium Redox Flow Batteries”, Renewable and Sustainable Energy Reviews, 69, pp. 263–274, 2017.
  7. Khazaeli, A., Vatani, A., Tahouni, N., and Panjeshahi, M. H., “Numerical Investigation and Thermodynamic Analysis of the Effect of Electrolyte Flow Rate on Performance of All Vanadium Redox Flow Batteries”, Journal of Power Sources, Vol. 293, pp. 599-612, 2015.
  8. Wang,T., Fu, J., Zheng, M., and Yu, Z. “Dynamic Control Strategy for the Electrolyte Flow Rate of Vanadium Redox Flow Batteries”, Applied Energy, Vol. 227, pp. 613-623, 2017.
  9. Yang, H.S., Park, J.H., Ra, H.W., Jin, C.S., and Yang, J.H. “Critical Rate of Electrolyte Circulation for Preventing Zinc Dendrite Formation in a Zincebromine Redox Flow Battery”, Journal of Power Sources, Vol. 325, pp. 446-452, 2016.
  10. Maurya, S., Nguyen, P.T., Seung Kim, Y., and Kang, Q. “Effect of Flow Field Geometry on Operating Current Density, Capacity and Performance of Vanadium Redox Flow Battery”, Journal of Power Sources, Vol. 404, pp. 20–27, 2018.
  11. Zhang, B.W., Lei, Y., Bai, B.F., Xu, A., and Zhao, T.S. “A Two-Dimensional Mathematical Model for Vanadium Redox Flow Battery Stacks Incorporating Nonuniform Electrolyte Distribution in the Flow Frame”, Applied Thermal Engineering, 2019.
  12. Zhang, B.W., Lei, Y., Bai, B.F., and Zhao, T.S. “A Two-Dimensional Model for the Design of Flow Fields in Vanadium Redox Flow Batteries”, International Journal of Heat and Mass Transfer, Vol. 135 pp. 460–469, 2019.
  13. Gundlapalli, R. and Jayanti, S. “Effect of Channel Dimensions of Serpentine Flow Fields on the Performance of a Vanadium Redox Flow Battery, Journal of Energy Storage, Vol. 23, pp. 148–158, 2019.
  14. Knudsen, E., Albertus, P., Cho, K.T., Weber, A.Z., and Kojic, A. “Flow Simulation and Analysis of High-Power Flow Batteries”, Journal of Power Sources, Vol. 299, pp. 617-628, 2015.
  15. Messaggi, M., Canzi, P., Mereu, R., Baricci, A., Inzoli, F., Casalegno, A., and Zago, M. “Analysis of Flow Field Design on Vanadium Redox Flow Battery Performance: Development of 3D Computational Fluid Dynamic Model and Experimental Validation”, Applied Energy, Vol. 228, pp. 1057–1070, 2018.
  16. Oh, K., Kang, T.J., Park, S., Tucker, M.C., Weber, A.Z., and Ju, H. “Effect of Flow-Field Structure on Discharging and Charging Behavior of Hydrogen/Bromine Redox Flow Batteries”, Electrochimica Acta, Vol. 230, pp. 160-173, 2017.
  17. Ishitobi, H., Saito, J., Sugawara, S., Oba, K., and Nakagawa, N., “Visualized Cell Characteristics by a Two-Dimensional Model of Vanadium Redox Flow Battery with Interdigitated Channel and Thin Active Electrode”, Electrochimica Acta, Vol. 313, pp. 513-522, 2019.
  18. Kumar, S. and Jayanti, S. “Effect of Electrode Intrusion on Pressure Drop and Electrochemical Performance of an All-Vanadium Redox Flow Battery”, Journal of Power Sources, Vol. 360, pp. 548-558, 2017.
  19. Escudero-Gonzalez, J. and Amparo Lopez-Jimenez, P. “Methodology to Optimize Fluid-Dynamic Design in a Redox Cell”, Journal of Power Sources, Vol. 251, pp. 243-253, 2014.
  20. Hnedkovsky, L., Bochmann, S., May, P.M., and Hefter, G., “Molar Volumes and Heat Capacities of Aqueous Solutions of Potassium Hydroxide and for Water Ionization up to 573 K at 10 MPa”, Journal of Chemical Engineering Data, Vol. 62 , pp. 2959−2972, 2016.
  21. Jiang, H. and Cheng, L. “Strouhal–Reynolds Number Relationship for Flow Past a Circular Cylinder”, Journal of Fluid Mech., Vol. 832, pp. 170–188, 2017.