مطالعه عددی رشد یخ شبنم و روشن روی دهانه بال پهپاد

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی دانشگاه فردوسی مشهد ، مشهد، ایران

2 دانشکده مهندسی. دانشگاه فردوسی مشهد ، مشهد ، ایران

چکیده

در این پژوهش رشد دو نوع یخ شبنم و روشن در طول دهانه بال یک پهپاد (UAV) مورد مطالعه قرار گرفت. همچنین علت فیزیکی تشکیل این یخ‌ها روی سطح به‌همراه تاثیر یخ‌زدگی روی ضرایب آیرودینامیکی بال توسط روش عددی بررسی شد. برای این‌منظور، بال مستطیلی با مقطع ناکا0012 در زاویه حمله 4 درجه، در دو دمای مختلف مورد مطالعه قرار گرفت. از حلگر فشارمبنا و مدل آشفتگی یک معادله‌ای اسپالارت-آلماراس در نرم افزار تجاری استفاده شد. محاسبات در رینولدز 106×3 صورت گرفت. نتایج حاصل از الگوی رشد یخ حاکی از آن است که روی دهانه بال از ریشه تا میانه تفاوتی میان ضخامت یخ وجود نداشته ولی از قسمت میانه تا نوک، به‌علت افزایش سرعت جریان، میزان برخورد و تجمیع قطرات در ناحیه مذکور افزایش یافته که نتیجه آن افزایش ضخامت یخ می‌باشد. همچنین تحت شرایط یخ روشن، در نزدیک لبه فرار به‌علت رشد لایه مرزی، یخ تشکیل می‌شود. با انجام محاسبات مشابه درحالت غیرلزج و عدم رشد یخ در نزدیک لبه فرار، صحت این ادعا نیز ثابت شد. ازطرفی پدیده جریان القایی که روی نوک بال‌های سه‌بعدی به-وجود می‌آید، باعث برخورد قسمتی‌از قطرات به نوک بیرونی بال و درنتیجه رشد مقداری ناچیز یخ در ناحیه مذکور می‌شود. بعلاوه بررسی ضرایب برآ و پسا نشان داد که تشکیل یخ باعث افت عملکرد آیرودینامیکی بال می‌شود. همچنین این مطالعه نشان داد که افت عملکرد ناشی از یخ روشن به‌دلیل ایجاد شاخ روی سطح بال، بیشتر از یخ شبنم می‌باشد.

کلیدواژه‌ها


Smiley face

  1. Venkataramani, K., McVey, L., Holm, R., and Montgomery, K. “Inclement weather considerations for aircraft engines”, 45th AIAA Aerospace Sciences Meeting and Exhibit, p. 695, 2007.
  2. Mason, J., Strapp, W., and Chow, P. “The ice particle threat to engines in flight”, 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 206, 2006. Mason, W. Strapp, and P. Chow, "The ice particle threat to engines in flight." p. 206, 2006.
  3. M. Jones, M. S. Reveley, J. K. Evans, and F. A. Barrientos, “Subsonic aircraft safety icing study,” 2008.
  4. -q. Zhao, Q.-j. Zhao, and X. Chen, “New 3-D ice accretion method of hovering rotor including effects of centrifugal force,” Aerospace Science and Technology, vol. 48, pp. 1-130-22, , 2016.
  5. Ilianna,“Experimental Investigation of Droplet Impingement on Dry Solid Surfaces,” UNIVERSITY OF THESSALY, 2020.
  6. ANSYS FENSAP-ICE User Manual, U.S.A, 2017.
  7. P. Raj, J. Lee, and R. Myong, “Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions,” Aerospace Science and Technology, vol. 85, pp. 320-333, 2019.
  8. Han, J. Palacios, and S. Schmitz, “Scaled ice accretion experiments on a rotating wind turbine blade,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 109, pp. 55-67, 2012.
  9. Hann, "UAV icing: Comparison of LEWICE and FENSAP-ICE for ice accretion and performance degradation." p. 2861, 2018.
  10. Reckzeh, “Aerodynamic design of the high-lift-wing for a Megaliner aircraft,” Aerospace Science and technology, vol. 7, No. 2, pp. 107-119, 2003.
  11. O. Valarezo, F. T. Lynch, and R. J. McGhee, “Aerodynamic performance effects due to small leading-edge ice (roughness) on wings and tails,” Journal of aircraft, vol. 30, No. 6, pp. 807-812, 1993.
  12. ‌ and‌‌ Costes, and F. Moens, “Advanced numerical prediction of iced airfoil aerodynamics,” Aerospace Science and Technology, vol. 91, pp. 186-207, 2019.
  13. and Szilder, and S. McIlwain, In-flight icing of UAVs-the influence of Reynolds number on the ice accretion process, 0148-7191, SAE Technical Paper, 2011.
  14. . Williams, A. Benmeddour, G. Brian, and M. Ol, "The effect of icing on small unmanned aircraft low Reynolds number airfoils." pp. 19-25, 2017.
  15. Doostmahmoudi, M.Mirzaei, and Nazemian alei, Experimental study on flow pattern and aerodynamic coefficients of NLF-0414 iced airfoil, in persian, 2016.

 

  1. Mirzaei, M. A. Ardekani, and M. Doosttalab, “Numerical and experimental study of flow field characteristics of an iced airfoil,” Aerospace Science and Technology, vol. 13, no. 6, pp. 267-276, 2009.
  2. Reid, G. Baruzzi, I. Ozcer, D. Switchenko, and W. Habashi, "FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation." 51st AIAA Aerospace Sciences Meeting and including the New Horizons Forum and Aerospace Exposition, p. 750, 2013.
  3. Fortin and G. Perron, "Wind turbine icing and de-icing." p. 750, 2013. p. 274, 2009.
  4. Jackson, The dynamics of fluidized particles: Cambridge University Press, 2000.
  5. Bourgault, H. Beaugendre, and W. G. Habashi, “Development of a shallow-water icing model in FENSAP-ICE,” Journal of Aircraft, vol. 37, no. 4, pp. 640-646, 2000.
  6. L. Messinger, “Equilibrium temperature of an unheated icing surface as a function of air speed,” Journal of the aeronautical sciences, vol. 20, No. 1, pp. 29-42, 1953.
  7. H. Beaugendre, F. Morency, and W. G. Habashi, “FENSAP-ICE's three-dimensional in-flight ice accretion module: ICE3D,” Journal of aircraft, vol. 40, No. 2, pp. 239-247, 2003.
  8. Beaugendre, F. Morency, and W. G. Habashi, “Development of a second generation in-flight icing simulation code,” 2006.
  9. م. نادری نژاد, و م. ح جوارشکیان, “بررسی عددی تأثیر سه نوع بالک مختلف بر عملکرد آیرودینامیکی جریان در عدد رینولدز پایین,” دوفصلنامه مکانیک سیالات و آیرودینامیک
    ,vol. 9, no. 1, pp. 83-98, 2020.
  10. K. Lynch, “Bio-inspired adaptive wingtip devices for low Reynolds number operation,” 2017.
  11. Shin and T. BOND, "Results of an icing test on a NACA 0012 airfoil in the NASA Lewis icing research tunnel." p. 64, 1992.
  12. Shin, and T. H. Bond, Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil: Citeseer, 1992.