مدل سازی سه بعدی جریان حبابی الکترولیت در فاصله بین دو الکترود یک سلول باتری جریانی با درنظر گرفتن جداکننده های متفاوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکتری تخصصی دانشگاه جامع امام حسین (ع)، تهران، ایران

2 کارشناسی ارشد، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در باتری‌ جریانی Zn-Ag2O ، الکترولیت به عنوان یک ماده فعال در واکنش های الکتروشیمیایی در فاصله بسیار ناچیز بین الکترودها، جریان دارد و به دلیل جلوگیری از اتصال کوتاه بین الکترودها، معمولا از جداکننده‌هایی بین آن‌ها استفاده می گردد. در این باتری ها، گاز هیدروژن ناشی از واکنش‌های الکتروشیمیایی بصورت حباب از سطح کاتد به جریان الکترولیت وارد شده و جریان دوفازی تشکیل می دهد. حضور این حباب‌های گازی در جریان الکترولیت، علی الخصوص در فرایند های دشارژ با نرخ بالا، می تواند باعث کاهش سطح فعال الکتروشیمیایی الکترودها، افزایش مقاومت در باتری و درنتیجه کاهش ظرفیت باتری گردد. در این مقاله، به منظور رفع این مشکل، با در نظر گرفتن دو سطح مقطع متفاوت برای جدا کننده ها، نحوه تشکیل و حضور حباب‌های گازی بر روی سطوح الکترودی و در فاصله بین الکترودها، بصورت عددی بررسی شده است. نتایج این مطالعه نشان داد که حباب‌های حاضر در جریان دوفازی الکترولیت ، زمان بیشتری در پشت جداکننده با سطح مقطع مربع شکل نسبت به حالت استفاده از جداکننده با سطح مقطع دایروی، در فاصله ناچیز بین الکترودها طی کرده تا از آن عبور کند. لذا این تاخیر، منجر به رسیدن دیگر حباب‌ها به همدیگر و درنتیجه، ترکیب شدن آن ها شده است؛ این امر با دو رویکرد مثبت و منفی در این مقاله بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

3D modeling of the electrolyte bubble flow in the distance between two electrodes of a flow battery by considering different spacers

نویسندگان [English]

  • Saeed Nahidi 1
  • Ehsan Behroozizade 2
1 Assistant Professor, Department of Mechanical Engineering, Imam Hossein University, Tehran, Iran
2 Master's degree, Shahid Beheshti University, Tehran, Iran
چکیده [English]

In Zn-Ag2O flow batteries, the electrolyte as one of active substances in electrochemical reactions flows circulatory in the narrow distance between electrodes, and in order to avoid of short circuit inside the battery cells, the spacers are used between their electrodes. In these batteries, the hydrogen gas bubble due to electrochemical reactions is produced on the cathode and then released within the electrolyte flow and a two-phase current is formed. Especially at high-rate discharge processes, this event can reduce the electrochemical active surface of the electrodes, increase the ohmic resistance, and thereby, reduce in the battery capacity. In this paper in order to solve this problem, the behavior of gas bubbles on the electrodes and within the electrolyte flow and their effect on the electrochemical active surface by considering two types of cross-sectional surfaces for spacers, is studied numerically. The results shown that the gas bubbles within the two-phase electrolyte flow spent more time behind the spacers with square cross-section compared to the case of spacers with a circular cross-section at the narrow distance between the electrodes. Therefore, this delay has led to other gas bubbles reaching each other in the electrolyte flow and as a result, they are combined. This event is investigated with two positive and negative approaches in this article.

کلیدواژه‌ها [English]

  • Zn-Ag2O Flow Battery
  • Spacers
  • Electrochemical Active Surface
  • 3D modeling
  • Two-phase Flow
  • Hydrogen Bubble

Smiley face

  1. Thomas B. Reddy, “Linden's Handbook of Batteries”, Fourth Edition, Los Angeles, United States, 2011.

    1. Chen, R., Kim, S., Chang, Z., “Redox Flow Batteries: Fundamentals and Application”, 2017.DOI:http://dx.doi.org/10.5772/intechopen.68752.
    2. Anderson, G. E., Middletown, R.I, Al-AgO Primary Battery, United States Patent, 1975.
    3. Taqieddin, A., Nazari, R., Rajic, L., Alshawabkeh, A., “Review—Physicochemical Hydrodynamicsof Gas Bubbles in Two Phase Electrochemical Systems”, Journal of The Electrochemical Society, vol, 13, 164, pp. E448-E459 , 2017. https://doi.org/10.1149/2.1161713jes
    4. Aldas, K., Pehlivanoglu, N., Mat, M. D., “Numerical and experimental investigation of two-phaseflow in an electrochemical cell”, international journal of hydrogen energy , vol. 33 , pp. 3668 – 367, 2008. https://doi.org/10.1016/j.ijhydene.2008.04.047
    5. Hreiza, R., Abdelouahed, L., Fünfschilling, D., Lapicque, F., “Electrogenerated bubbles inducedconvection in narrow vertical cells: A review”, chemical engineering research and design, vol. 100, pp. 281-268, 2015. https://doi.org/10.1016/j.cherd.2015.05.035
    6. Mat, M. D., Aldas, K., Veziroolu, T.N., “A two phase model for electrochemical systems”, Full Cell Technologies, pp. 271-277, 2005. DOI : https://doi.org/10.1007/1-4020-3498-9_30.
    7. Ravichandra, S., Zhang, H., Zappi, G., Bourgeois, R., “Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell”, Journal of Computational Multiphase Flows, pp. 341-349, 2009. DOI : https://doi.org/10.1260%2F1757-482X.1.4.341.
    8. Esmailpour, K., “A comprehensive Guide to Ansys CFX (Advanced)”, Dibagaran Publisher, 2014. ISBN: 978-600-124-348-6 (in Persion)
    9. Brackbill, J. U., Kothe, D. B., Zemach, C., “A Continuum Method for Modeling Surface Tension”, Journal of Computational Physics, 100, pp. 335-354, 1992. DOI: https://doi.org/10.1016/0021-9991(92)90240-Y.
    10. Clift, R., Grace, J. R., Weber, M. E., “Bubbles, Drops, and Particles”, 1978.
    11. Tomiyama, A., Tamai, H., Zun, I., Hosokawa, S., “Transverse migration of single bubbles in simple shear flows”, Chemical Engineering Science, 57, pp. 1849 – 1858, 2002. DOI:https://doi.org/10.1016/S0009-2509(02)00085-4.
    12. Paladino, E.E., Maliska, C.R., “Virtual mass in accelerated bubbly flows”, SINMEC - Computational Fluid Dynamics Laboratory, Federal University of Santa Catarina, Florianopolis/SC – Brazil - CEP: 88040-900, 2003.
    13. Frank, T., Zwart, P.J., Krepper, E., Prasser, H.M., Lucas, D., “Validation of CFD models for mono- and polydisperse air–water two-phase flows in pipes”, Nuclear Engineering and Design, 238, pp. 647–659, 2008. DOI : https://doi.org/10.1016/j.nucengdes.2007.02.056.
    14. Lahey Jr, R.T., Lopez de Bertodano, M., Jones Jr, O.C., “Phase distribution in complex geometry conduits”, Nuclear Engineering and Design, 141, pp. 177-201, 1993. DOI:https://doi.org/10.1016/00295493(93)90101-E.
    15. Burns, A. D., Frank, T., Hamill, I., Shi, J., “The Favre Averaged Drag Model for Turbulent Dispersion in Eulerian Multi-Phase Flows”, 5th International Conference on Multiphase Flow, Japan , pp. 392-398, 2004.
    16. Knewstubb, P. F., Suoden, T. M., “Surface Tension of Aqueous Solutions of Pottassium Hydroxide, Nature”, Department of Physical Chemistry, University of Cambridge, 196 , pp. 1312-1313, 1962.

    18. Courant, R., Friedrichs, K., Lewyt, H., “On the Partial Difference Equations of Mathematical Physics”, IBM Journal, pp. 215-234, 1967. DOI:https://doi.org/10.1147/rd.112.0215