بررسی آزمایشگاهی اثر سرعت جریان روی ناپایداری انگشتی شدن جریان لزج امتزاجی برای سیالات نیوتنی و غیرنیوتنی در محیط متخلخل

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد، دانشگاه علم و صنعت ایران،تهران،ایران

2 دانشجوی دکترا دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشیار، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این مطالعه ناپایداری انگشتی لزج در فصل مشترک دو سیال در محیط متخلخل به‌صورت آزمایشگاهی برای سیالات نیوتنی و غیرنیوتنی مورد بررسی قرار گرفته است. محیط متخلخل آزمایش حاضر با استفاده از فناوری لیزر CO2 ساخته شده است. محلول آب/گلیسیرین به‌عنوان پایه نیوتنی و افزودنی پلیمر گزانتان گام به‌عنوان عامل غیرنیوتنی مورداستفاده بوده است. همچنین، متانول به‌عنوان سیال تزریقی در نظر گرفته شده است. مشاهدات آزمایشگاهی و عکس­های ضبط شده با بهره­گیری از کد نگارش شده در نرم‌افزار متلب پردازش و اطلاعات آماری مفیدی استخراج گردیده است. نتایج نشان می­دهد که بازده جاروب شدن محیط متخلخل برای سیالات غیرنیوتنی در مقابل سیال نیوتنی افزایش‌یافته و این روند صعودی آن با افزایش درصد وزنی پلیمر نیز ادامه می­یابد. همچنین زمان گشایش که یکی از مهم­ترین پارامترهای بررسی پدیده انگشتی لزج می­باشد با استفاده از سیالات غیرنیوتنی افزایش می­یابد. نتایج حاصل از مشاهدات بیانگر این مسئله است که استفاده از سیالات غیرنیوتنی در کاهش شدت ناپایداری رخداد انگشتی لزج کارایی مناسبی داشته است. کاهش شدت ناپایداری از مطالعه پارامترهای مهم طول مرز مشترک در راستای سلول محاسباتی و رصد حرکت انگشتی قالب بررسی شده است

کلیدواژه‌ها


Smiley face

  1. Saffman, G., and Taylor,  G.I. “The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proceedings of the Royal Society of London Series A. Mathematical and Physical Sciences ” ,Vol.245,PP.312-329,1958. https://doi.org/10.1098/rspa.1958.0085
  2. Taylor, G.I.“The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences”Vol.201,(1065)pp.192-196,1950. https://doi.org/10.1098/rspa.1950.0052
  3. Lewis, D.“The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences”vol,202(1068)pp.81-96. https://doi.org/10.1098/rspa.1950.0052
  4. Malhotra, S., Sharma, M.M.,and Lehman, E.R. “Experimental study of the growth of mixing zone in miscible viscous fingering. Physics of Fluids”, Vol. 27(1): pp. 014105. DOI:10.1063/1.4905581
  5. Homsy, G.M. “Viscous fingering in porous media. Annual review of fluid mechanics”, Vol.19(1): pp. 271-311, 1987. https://doi.org/10.1146/annurev.fl.19.010187.001415
  6. Hill, S., “Channeling in packed columns. Chemical Engineering Science”, Vol.1(6): pp. 247-253. https://doi.org/10.1016/0009-2509(52)87017-4
  7. Lenormand, R., E. Touboul, and C. Zarcone, Numerical models and experiments on immiscible displacements in porous media. Journal of fluid mechanics”,Vol. 189: pp. 165-187.DOI: https://doi.org/10.1017/S0022112088000953
  8. Chen, J.-D. and D. Wilkinson,“Pore-scale viscous fingering in porous media. Physical review letters”,Vol.55(18),pp.1892. DOI:https://doi.org/10.1103/PhysRevLett.55.1892
  9. Blackwell, R., J. Rayne, and W. Terry, “Factors influencing the efficiency of miscible displacement. Transactions of the AIME, Vol.217(01)pp.1-8. https://doi.org/10.2118/1131-G
  10. Chuoke, R., P. Van Meurs, and C. van der Poel, “The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Transactions of the AIME”, Vol. 216(01) , pp. 188-194. https://doi.org/10.2118/1141-G
  11. Perrine, R.L., “The development of stability theory for miscible liquid-liquid displacement. Society of Petroleum Engineers Journal”, Vol.1(01): pp. 17-25. https://doi.org/10.2118/1509-G
  12. Tan, C. and G. Homsy, “Stability of miscible displacements in porous media: Rectilinear flow. The Physics of fluids”, Vol. 29(11): pp. 3549-3556. https://doi.org/10.1063/1.865832
  13. Christie, M. and D. Bond, “Detailed simulation of unstable processes in miscible flooding. SPE Reservoir Engineering”,1987. 2(04): p. 514-522.
  14. Kopf Sill, A.R. and G. Homsy, “Nonlinear unstable viscous fingers in Hele–Shaw flows. I. Experiments. The Physics of fluids”, 1988. 31(2): p. 242-249.
  15. Ruith, M. and E. Meiburg,“Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium. Journal of Fluid Mechanics”, 2000. 420: p. 225-257.
  16. Jiao, C. and T. Maxworthy, “An experimental study of miscible displacement with gravity-override and viscosity-contrast in a Hele Shaw cell. Experiments in fluids”, 2008. 44(5): p. 781-794.
  17. Benham, A. and R. Olson, A model study of viscous fingering. Society of petroleum engineers journal, 1963. 3(02): p. 138-144.
  18. Hosseinalipoor, S.M., et al., Experimental study of finger behavior due to miscible viscous and gravity contrast in a porous model. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. 42(19): p. 2434-2447.
  19. Miri, H., H. Saffari, and S. Hosseinalipoor, Numerical Investigation of Miscible Viscous Fingering Instability in Darcian and Non-Darcian Porous Media. Modares Mechanical Engineering, 2020. 20(10): p. 2471-2482.
  20. Keable, D., et al., The effect of viscosity ratio and Peclet number on miscible viscous fingering in a Hele-Shaw cell: A combined numerical and experimental study. Transport in Porous Media, 2022. 143(1): p. 23-45.
  21. Azaiez, J. and B. Singh, Stability of miscible displacements of shear thinning fluids in a Hele-Shaw cell. Physics of Fluids, 2002. 14(5): p. 1557-1571.
  22. Siavashi, M., Numerical simulation of two-phase non-Newtonian polymer flooding in porous media to enhance oil recovery. Modares Mechanical Engineering, 2016. 16(7): p. 297-307.
  23. Li, H., B. Maini, and J. Azaiez, Experimental and numerical analysis of the viscous fingering instability of Shearthinning fluids. The Canadian Journal of Chemical Engineering”, Vol. 84(1): pp. 52-62.
  24. Delshad, M., “et al. Mechanistic interpretation and utilization of viscoelastic behavior of polymer solutions for improved polymer-flood efficiency. in SPE Symposium on Improved Oil Recovery. 2008. Society of Petroleum Engineers”.
  25. Jackson, G.T., et al., CFD-based representation of non-Newtonian polymer injectivity for a horizontal well with coupled formation-wellbore hydraulics. Journal of Petroleum Science and Engineering, 2011. 78(1): p. 86-95.
  26. Fontana, J.V., E.O. Dias, and J.A. Miranda, Controlling and minimizing fingering instabilities in non-Newtonian fluids. Physical Review E, 2014. 89(1): p. 013016.
  27. Shoghi, M.R. and M. Norouzi, Linear stability analysis and nonlinear simulation of non-Newtonian viscous fingering instability in heterogeneous porous media. Rheologica Acta, 2015. 54(11): p. 973-991.
  28. Logvinov, O.A., Viscous fingering in poorly miscible power-law fluids. Physics of Fluids, 2022. 34(6): p. 063105.
  29. Jangir, P., R. Mohan, and P. Chokshi, Stability analysis of miscible viscous fingering in bingham and carreau fluids. Transport in Porous Media, 2022. 141(2): p. 561-583.
  30. Vamerzani, B., M. Norouzi, and B. Firoozabadi, Theoretical and experimental study on the motion and shape of viscoelastic falling drops through Newtonian media. Rheologica Acta, 2016. 55(11): p. 935-955.
  31. Brandão, L.V., et al., Bioconversion from crude glycerin by Xanthomonas campestris 2103: xanthan production and characterization. Brazilian Journal of Chemical Engineering, 2013. 30: p. 737-746.
  32. Athy, L.F., Density, porosity, and compaction of sedimentary rocks. Aapg Bulletin, 1930. 14(1): p. 1-24. https://doi.org/10.1306/3D93289E-16B1-11D7-8645000102C1865D
  33. Darcy, H., Les fontaines publiques de la ville de Dijon: exposition et application. 1856: Victor Dalmont.
  34. Clarke, A., et al., How viscoelastic-polymer flooding enhances displacement efficiency. SPE Journal, 2016. 21(03): p. 0675-0687. https://doi.org/10.2118/174654-PA
دوره 12، شماره 1 - شماره پیاپی 31
بهار و تابستان 1402
شهریور 1402
صفحه 1-12
  • تاریخ دریافت: 01 اسفند 1401
  • تاریخ بازنگری: 22 تیر 1401
  • تاریخ پذیرش: 08 مرداد 1401
  • تاریخ انتشار: 01 شهریور 1402