[1] Fridman, A., and Kennedy, L.A. “Plasma physics and engineering”, CRC press, 2021.
[2] Ju, Y. “Recent progress and challenges in fundamental combustion research”, Advances in Mechanics, Vol. 44, No. 20, p. 201402, 2014. Doi: 10.6052/1000-0992-14-011.
[3] Fitzpatrick, R. “Plasma physics: an introduction”, CRC Press, 2014.
[4] Matveev, I.B., Ardelyan, N., Bychkov, V., Bychkov, D., and Kosmachevskii, K. “Plasma Assisted Combustion, Gasification and Pollution Control”, Outskirts Press, Inc., 2013.
[5] Starikovskiy, A., and Aleksandrov, N. “Plasma-assisted ignition and combustion, Progress in Energy and Combustion Science”, Vol. 39, No. 1, pp. 61-110, 2013. Doi:10.1016/j.pecs.2012.05.003.
[6] Raizer, Y. P. “Gas discharge physics”, Springer, New York, 1991.
[7] Fridman, A. “Plasma chemistry”, Cambridge University Press, 2008.
[8] Adamovich, I.V., and Lempert, W.R. “Challenges in understanding and predictive model development of plasma-assisted combustion”, Plasma Physics and Controlled Fusion, Vol. 57, No. 1, p. 014001, 2014. Doi:10.1088/0741-3335/57/1/014001.
[9] Ju, Y., and Sun, W. “Plasma assisted combustion: Progress, challenges, and opportunities”, Combustion and Flame, Vol. 162, No. 3, pp. 529-532, 2015. Doi:10.1016/j.combustflame.2015.01.017.
[10] Siemens, W. “Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten”, Annalen der Physik, Vol. 178, pp. 66-122, 1857. Doi:10.1002/andp.18571780905.
[11] Warburg, E. “Über die Ozonisierung des Sauerstoffs durch stille elektrische Entladungen”, Annalen der Physik, Vol. 318, pp. 464-476, 1904. Doi:10.1002/andp.18943180303.
[12] Otto, M.P. “L'Ozone et ses applications”, E. Chiron, 1929.
[13] Buss, K. “Die elektrodenlose Entladung nach Messung mit dem Kathodenoszillographen”, Archiv für Elektrotechnik, Vol. 26, pp. 261-265, 1932. Doi:10.1007/BF01657192.
[14] Massines, F., Rabehi, A., Decomps, P., Gadri, R.B., Ségur, P., and Mayoux, C. “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier”, Journal of Applied Physics, Vol. 83, pp. 2950-2957, 1998. Doi:10.1063/1.367051.
[15] Massines, F., Segur, P., Gherardi, N., Khamphan, C., and Ricard, A. “Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling”, Surface and Coatings Technology, Vol. 174, pp. 8-14, 2003. Doi:10.1016/S0257-8972(03)00540-1.
[16] Halter, F., Higelin, P., and Dagaut, P. “Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane”, Energy & fuels, Vol. 25, No. 7, pp. 2909-2916, 2011. Doi:10.1021/ef200550m.
[17] Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J., and Meeks, E. “PREMIX: A Fortran program for modeling steady laminar one-dimensional premixed flames”, Sandia National Laboratories Report, No. SAND85-8249, 1985.
[18] Ombrello, T., Won, S.H., Ju, Y., and Williams, S. “Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3”, Combustion and flame, Vol. 157, No. 10, pp. 1906-1915, 2010. Doi:10.1016/j.combustflame.2010.02.005.
[19] Ombrello, T., Won, S.H., Ju, Y., and Williams, S. “Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg)”, Combustion and Flame, Vol. 157, No. 10, pp. 1916-1928, 2010. Doi:10.1016/j.combustflame.2010.02.004.
[20] Do, H., Im, S.k., Cappelli, M.A., and Mungal, M.G. “Plasma assisted flame ignition of supersonic flows over a flat wall”, Combustion and Flame, Vol. 157, No. 12, pp. 2298-2305, 2010. Doi:10.1016/j.combustflame.2010.07.006.
[21] Ehn, A., Hurtig, T., Petersson, P., Zhu, J., Larsson, A., Fureby, C., Larfeldt, J., Li, Z., and Aldén, M. “Setup for microwave stimulation of a turbulent low-swirl flame”, Journal of Physics D: Applied Physics, Vol. 49, No. 18, p.185601, 2016. Doi:10.1088/0022-3727/49/18/185601.
[22] Eliasson, B., and Kogelschatz, U. “Modeling and applications of silent discharge plasmas”, IEEE transactions on plasma science, Vol. 19, pp. 309-323, 1991. Doi:10.1109/27.106829.
[23] Golubovskii, Y.B., Maiorov, V., Behnke, J., and Behnke, J. “Modelling of the homogeneous barrier discharge in helium at atmospheric pressure”, Journal of Physics D: Applied Physics, Vol. 36, No. 39, 2002. Doi:10.1088/0022-3727/36/1/306.
[24] Shin, J., and Raja, L.L. “Dynamics of pulse phenomena in helium dielectric-barrier atmospheric-pressure glow discharges”, Journal of Applied Physics, Vol. 94, pp. 7408-7415, 2003. Doi:10.1063/1.1625414.
[25] Nishida, H., and Abe, T. “Numerical analysis for plasma dynamics in SDBD plasma actuator”, 41st Plasmadynamics and Lasers Conference, p. 4634, 2010. https://doi.org/10.2514/6.2010-4634.
[26] Lin, K.M., Hung, C.T., Hwang, F.N., Smith, M.R., Yang, Y.W., and Wu, J.S. “Development of a parallel semi-implicit two-dimensional plasma fluid modeling code using finite-volume method”, Computer Physics Communications, Vol. 183, pp. 1225-1236, 2012. Doi:10.1016/j.cpc.2012.02.001.
[27] Seaton, A., Godden, D., MacNee, W., and Donaldson, K. “Particulate air pollution and acute health effects”, The lancet, Vol. 345, pp. 176-178, 1995. Doi:10.1016/S0140-6736(95)90173-6.
[28] Ehn, A., Zhu, J.J., Petersson, P., Li, Z.S., Aldén, M., Fureby, C., Hurtig, T., Zettervall, N., Larsson, A., and Larfeldt, J. “Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations”, Proceedings of the Combustion Institute, Vol. 35, No. 3, pp.3487-3495, 2015. Doi:10.1016/j.proci.2014.05.092.
[29] Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. “A tensorial approach to computational continuum mechanics using object-oriented techniques”, Computers in physics, Vol. 12, No. 6, pp. 620-631, 1998. Doi:10.1063/1.168744.
[30] Sabelnikov, V., and Fureby, C. “LES combustion modeling for high Re flames using a multi-phase analogy”, Combustion and Flame, Vol. 160, No. 1, pp. 83-96, 2013. Doi:10.1016/j.combustflame.2012.09.008.
[31] Fureby, C., Ehn, A., Nilsson, E., Petterson, P., Aldén, M., Hurtig, T., Zettervall, N., Li, Z., and Larfeldt, J. “Investigations of microwave stimulation of turbulent flames with implications to gas turbine combustors”, In 55th AIAA Aerospace Sciences Meeting, p. 1779, 2017. https://doi.org/10.2514/6.2017-1779.
[32] Nagaraja, S. “Multi-scale modeling of nanosecond plasma assisted combustion”, PhD thesis, Georgia Institute of Technology, 2014.
[33] Wang, C.C. “Numerical Simulation of Combustion Enhancement Through a Repetitive Pulsed Plasma Actuator”, Journal of Thermophysics and Heat Transfer, 2015. Doi:10.2514/1.T4579.
[34] Settles, G.S. “Schlieren and shadowgraph techniques: visualizing phenomena in transparent media”, Springer Science & Business Media, 2001.
[35] Rallis, C.J., and Garforth, A.M. “The determination of laminar burning velocity”, Prog. Energy Combust. Sci., Vol. 6, No. 4, pp. 303–329, 1980. Doi:10.1016/0360-1285(80)90008-8.
[36] Elattar, H. F., Specht, E., Fouda, A., and BinMahfouz, A.S. “Study of parameters influencing fluid flow and wall hot spots in rotary kilns using CFD”, Can. J. Chem. Eng., Vol. 94, No. 2, pp. 355–367, 2016. Doi:10.1002/cjce.22392.
[37] Holman, J., “Experimental methods for engineers”, 2001.
[38] Sun, H., Yang, S.I., Jomaas, G., and Law, C.K. “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proc. Combust. Inst., Vol. 31, No. 1, pp. 439–446, 2007. Doi:10.1016/j.proci.2006.07.193.