مطالعه تجربی فرآیند تأثیرگذاری پلاسما بر مشخصات عملکردی شعله­ های ایستا و متحرک

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

چکیده

بهبود فرایند احتراق از دیرباز به عنوان یکی از مهمترین فرایندهای دخیل در تولید انرژی مورد نیاز انواع سیستم‌ها مورد توجه بوده است. استفاده از ابزار پلاسمایی به عنوان راهکار نوین برای افزایش بازده و ایجاد قابلیت عملکرد سیستم‌های اشتعالی در شرایط کاری وسیع‌تر در سالیان اخیر مورد توجه قرار گرفته است. در این تحقیق تأثیرات سیستم پلاسما پایه بر مشخصه‌های عملکردی فرایند احتراق به صورت تجربی بررسی شده است. برای این منظور از دو پیکربندی آزمایشگاهی استفاده شده است. در ساختار اول از مشعل بونزن به دو صورت باز و محصور برای مطالعه خواص شعله ساکن پیش آمیخته استفاده شده است. در این ساختار تحلیل نتایج بر اساس تصویر برداری اپتیکی به روش شیلرن و مشاهده پایداری و مخروط شعله تشکیل شده صورت گرفته است. در ساختار دوم از محفظه حجم ثابت برای مطالعه خواص شعله متحرک در محیط اشتعال‌پذیر استفاده شده است. در این مطالعه تفسیر نتایج بر اساس تصویر برداری فوق سریع به روش شیلرن از شعله شکل گرفته درون محفظه و همچنین داده‌های فشار درون محفظه حین احتراق استفاده شده است. نتایج گویای بهبود مشخصات شعله شامل سرعت آرام شعله و پایداری آن بر اساس مشاهدات شعله باز می‌باشد. همچنین کاهش زمان توسعه اولیه شعله و افزایش ناحیه اشتعال پذیری مخلوط تحت تأثیر محیط پلاسمایی، از نتایج حاصل از تست محفظه حجم بسته می‌باشد.

کلیدواژه‌ها


Smiley face

] Fridman, A., and Kennedy, L.A. “Plasma physics and engineering”, CRC press, 2021.
[2] Ju, Y. “Recent progress and challenges in fundamental combustion research”, Advances in Mechanics, Vol. 44, No. 20, p. 201402, 2014. Doi: 10.6052/1000-0992-14-011.
[3] Fitzpatrick, R. “Plasma physics: an introduction”, CRC Press, 2014.
[4] Matveev, I.B., Ardelyan, N., Bychkov, V., Bychkov, D., and Kosmachevskii, K. “Plasma Assisted Combustion, Gasification and Pollution Control”, Outskirts Press, Inc., 2013.
[5] Starikovskiy, A., and Aleksandrov, N. “Plasma-assisted ignition and combustion, Progress in Energy and Combustion Science”, Vol. 39, No. 1, pp. 61-110, 2013. Doi:10.1016/j.pecs.2012.05.003.
[6] Raizer, Y. P. “Gas discharge physics”, Springer, New York, 1991.
[7] Fridman, A. “Plasma chemistry”, Cambridge University Press, 2008.
[8] Adamovich, I.V., and Lempert, W.R. “Challenges in understanding and predictive model development of plasma-assisted combustion”, Plasma Physics and Controlled Fusion, Vol. 57, No. 1, p. 014001, 2014. Doi:10.1088/0741-3335/57/1/014001.
[9] Ju, Y., and Sun, W. “Plasma assisted combustion: Progress, challenges, and opportunities”, Combustion and Flame, Vol. 162, No. 3, pp. 529-532, 2015. Doi:10.1016/j.combustflame.2015.01.017.
[10] Siemens, W. “Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten”, Annalen der Physik, Vol. 178, pp. 66-122, 1857. Doi:10.1002/andp.18571780905.
[11] Warburg, E. “Über die Ozonisierung des Sauerstoffs durch stille elektrische Entladungen”, Annalen der Physik, Vol. 318, pp. 464-476, 1904. Doi:10.1002/andp.18943180303.
[12] Otto, M.P. “L'Ozone et ses applications”, E. Chiron, 1929.
[13] Buss, K. “Die elektrodenlose Entladung nach Messung mit dem Kathodenoszillographen”, Archiv für Elektrotechnik, Vol. 26, pp. 261-265, 1932. Doi:10.1007/BF01657192.
[14] Massines, F., Rabehi, A., Decomps, P., Gadri, R.B., Ségur, P., and Mayoux, C. “Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier”, Journal of Applied Physics, Vol. 83, pp. 2950-2957, 1998. Doi:10.1063/1.367051.
[15] Massines, F., Segur, P., Gherardi, N., Khamphan, C., and Ricard, A. “Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: diagnostics and modelling”, Surface and Coatings Technology, Vol. 174, pp. 8-14, 2003. Doi:10.1016/S0257-8972(03)00540-1.
[16] Halter, F., Higelin, P., and Dagaut, P. “Experimental and detailed kinetic modeling study of the effect of ozone on the combustion of methane”, Energy & fuels, Vol. 25, No. 7, pp. 2909-2916, 2011. Doi:10.1021/ef200550m.
[17] Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J., and Meeks, E. “PREMIX: A Fortran program for modeling steady laminar one-dimensional premixed flames”, Sandia National Laboratories Report, No. SAND85-8249, 1985.
[18] Ombrello, T., Won, S.H., Ju, Y., and Williams, S. “Flame propagation enhancement by plasma excitation of oxygen. Part I: Effects of O3”, Combustion and flame, Vol. 157, No. 10, pp. 1906-1915, 2010. Doi:10.1016/j.combustflame.2010.02.005.
[19] Ombrello, T., Won, S.H., Ju, Y., and Williams, S. “Flame propagation enhancement by plasma excitation of oxygen. Part II: Effects of O2(a1Δg)”, Combustion and Flame, Vol. 157, No. 10, pp. 1916-1928, 2010. Doi:10.1016/j.combustflame.2010.02.004.
[20] Do, H., Im, S.k., Cappelli, M.A., and Mungal, M.G. “Plasma assisted flame ignition of supersonic flows over a flat wall”, Combustion and Flame, Vol. 157, No. 12, pp. 2298-2305, 2010. Doi:10.1016/j.combustflame.2010.07.006.
[21] Ehn, A., Hurtig, T., Petersson, P., Zhu, J., Larsson, A., Fureby, C., Larfeldt, J., Li, Z., and Aldén, M. “Setup for microwave stimulation of a turbulent low-swirl flame”, Journal of Physics D: Applied Physics, Vol. 49, No. 18, p.185601, 2016. Doi:10.1088/0022-3727/49/18/185601.
[22] Eliasson, B., and Kogelschatz, U. “Modeling and applications of silent discharge plasmas”, IEEE transactions on plasma science, Vol. 19, pp. 309-323, 1991. Doi:10.1109/27.106829.
[23] Golubovskii, Y.B., Maiorov, V., Behnke, J., and Behnke, J. “Modelling of the homogeneous barrier discharge in helium at atmospheric pressure”, Journal of Physics D: Applied Physics, Vol. 36, No. 39, 2002. Doi:10.1088/0022-3727/36/1/306.
[24] Shin, J., and Raja, L.L. “Dynamics of pulse phenomena in helium dielectric-barrier atmospheric-pressure glow discharges”, Journal of Applied Physics, Vol. 94, pp. 7408-7415, 2003. Doi:10.1063/1.1625414.
[25] Nishida, H., and Abe, T. “Numerical analysis for plasma dynamics in SDBD plasma actuator”, 41st Plasmadynamics and Lasers Conference, p. 4634, 2010. https://doi.org/10.2514/6.2010-4634.
[26] Lin, K.M., Hung, C.T., Hwang, F.N., Smith, M.R., Yang, Y.W., and Wu, J.S. “Development of a parallel semi-implicit two-dimensional plasma fluid modeling code using finite-volume method”, Computer Physics Communications, Vol. 183, pp.  1225-1236, 2012. Doi:10.1016/j.cpc.2012.02.001.
[27] Seaton, A., Godden, D., MacNee, W., and Donaldson, K. “Particulate air pollution and acute health effects”, The lancet, Vol. 345, pp. 176-178, 1995. Doi:10.1016/S0140-6736(95)90173-6.
[28] Ehn, A., Zhu, J.J., Petersson, P., Li, Z.S., Aldén, M., Fureby, C., Hurtig, T., Zettervall, N., Larsson, A., and Larfeldt, J. “Plasma assisted combustion: Effects of O3 on large scale turbulent combustion studied with laser diagnostics and Large Eddy Simulations”, Proceedings of the Combustion Institute, Vol. 35, No. 3, pp.3487-3495, 2015. Doi:10.1016/j.proci.2014.05.092.
[29] Weller, H.G., Tabor, G., Jasak, H., and Fureby, C. “A tensorial approach to computational continuum mechanics using object-oriented techniques”, Computers in physics, Vol. 12, No. 6, pp. 620-631, 1998. Doi:10.1063/1.168744.
[30] Sabelnikov, V., and Fureby, C. “LES combustion modeling for high Re flames using a multi-phase analogy”, Combustion and Flame, Vol. 160, No. 1, pp. 83-96, 2013. Doi:10.1016/j.combustflame.2012.09.008.
[31] Fureby, C., Ehn, A., Nilsson, E., Petterson, P., Aldén, M., Hurtig, T., Zettervall, N., Li, Z., and Larfeldt, J. “Investigations of microwave stimulation of turbulent flames with implications to gas turbine combustors”, In 55th AIAA Aerospace Sciences Meeting, p. 1779, 2017. https://doi.org/10.2514/6.2017-1779.
[32] Nagaraja, S. “Multi-scale modeling of nanosecond plasma assisted combustion”, PhD thesis, Georgia Institute of Technology, 2014.
[33] Wang, C.C. “Numerical Simulation of Combustion Enhancement Through a Repetitive Pulsed Plasma Actuator”, Journal of Thermophysics and Heat Transfer, 2015. Doi:10.2514/1.T4579.
[34] Settles, G.S. “Schlieren and shadowgraph techniques: visualizing phenomena in transparent media”, Springer Science & Business Media, 2001.
[35] Rallis, C.J., and Garforth, A.M. “The determination of laminar burning velocity”, Prog. Energy Combust. Sci., Vol. 6, No. 4, pp. 303–329, 1980. Doi:10.1016/0360-1285(80)90008-8.
[36] Elattar, H. F., Specht, E., Fouda, A., and Bin‐Mahfouz, A.S. “Study of parameters influencing fluid flow and wall hot spots in rotary kilns using CFD”, Can. J. Chem. Eng., Vol. 94, No. 2, pp. 355–367, 2016. Doi:10.1002/cjce.22392.
[37] Holman, J., “Experimental methods for engineers”, 2001.
[38] Sun, H., Yang, S.I., Jomaas, G., and Law, C.K. “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proc. Combust. Inst., Vol. 31, No. 1, pp. 439–446, 2007. Doi:10.1016/j.proci.2006.07.193
دوره 12، شماره 1 - شماره پیاپی 31
بهار و تابستان 1402
شهریور 1402
صفحه 79-100
  • تاریخ دریافت: 18 اسفند 1401
  • تاریخ بازنگری: 12 تیر 1402
  • تاریخ پذیرش: 28 تیر 1402
  • تاریخ انتشار: 01 شهریور 1402