تحلیل عددی اثر خواص غیرنیوتنی سیالات بر پدیده ضربه قوچ در لوله‌ها

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار ، مؤسسه آموزش عالی لامعی گرگانی،گرگان، ایران

چکیده

در پژوهش حاضر، رفتار یک سیال غیرنیوتنی در شرایط رخداد پدیده ضربه قوچ، به‌صورت عددی مورد بررسی قرار گرفته است. خواص غیرنیوتنی سیال نظیر رابطه غیرخطی تنش و کرنش و نیز دارابودن ثابت زمانی رهایی از تنش و...باعث می­گردد که موج فشاری حاصل از قطع ناگهانی جریان، در این حالت، رفتاری متفاوت با یک سیال نیوتنی نظیر آب داشته باشد. سیستم مورد بررسی از نوع شیر، لوله و مخزن و معادلات حاکم بر مسئله نیز معادلات پیوستگی و مومنتوم است. در مدل‌سازی معادلات، از روش عددی تفاضل محدود استفاده شده است. در ادامه، بی‌بُعد سازی معادلات انجام شده و سپس، تاثیر اعداد دبورا و رینولدز بر تاریخچه فشاری در نقاط بحرانی لوله نظیر پشت شیر و وسط لوله بررسی گردیده است. نتایج مدل‌سازی نشان داده است که افزایش عدد دبورا که از شاخصهای سیال غیرنیوتنی است، باعث افزایش ارتفاع نوسانات موج فشاری در طول پدیده ضربه قوچ نسبت به سیال نیوتنی می­شود. همچنین مشخص گردیده است که در یک رینولدز ثابت، در جریان آرام، پدیده لاین پکینگ در سیال غیرنیوتنی، نسبت به سیال نیوتنی کمی بیشتر است که دلیل آن به ویژگی ثابت زمان رهایی از تنش ارتباط داده می­شود که به‌شدت متمایل به نگهداشت انرژی پتانسیل وارده بوده و در مقابل دمپینگ جریان انتقالی مقاومت می­کند و باعث می­شود که در مقایسه با سیال نیوتنی، زمان میرایی طولانی­تری داشته باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical analysis of the effect of non-Newtonian properties of fluids on fluid-hammer phenomenon in the pipes

نویسنده [English]

  • Banafsheh Norouzi
Assistant Professor, Gorgani Institute of Higher Education, Gorgan, Iran
چکیده [English]

In this paper, the behavior of a non-Newtonian polymer through fluid hammer phenomenon in the pipe investigates. Special properties of this fluid such as nonlinear relation between stress and strain, having relaxation time make the pressure wave resulting from this phenomenon to behave differently from a Newtonian fluid. The system under investigation is reservoir-pipe-valve system and the equations representing the conservation of mass and momentum govern the transitional flow in the pipes. In the modeling of the equations finite difference numerical method is used. After defining non-dimensional numbers of governing equations, the effect of Deborah and Reynolds numbers on pressure historic at critical points such as at valve and midpoint investigate. The modeling results show that about investigating sensitivity to the Reynolds number, the pressure wave produced by non-Newtonian polymer shows a sensitivity similar to that of Newtonian fluids. It was also found that an increase in the Deborah number, indicating the elasticity of the polymer, affects the reduction of tensions and increases the oscillation height and consequently attenuation time of the created transient flow to be longer. It has been observed that in similar conditions, the phenomenon of line packing in viscoelastic fluid is slightly higher than in Newtonian fluid. The reason for this is definitely related to the constant characteristic of the relaxation time, which is strongly inclined to maintain the incoming potential energy and resists the damping of the transfer flow, which causes a long damping time compared to the Newtonian fluid have more.

کلیدواژه‌ها [English]

  • azimuth angle
  • differential pressure sensor
  • free-end cylinder
  • underwater vehicle speedometry

Smiley face

https://creativecommons.org/licenses/by/4.0/

             [1]        V.L. Streeter, C. Lai, Waterhammer Analysis Including Fluid Friction, Second Edition, pp. 1491–1524, American Society of Civil Engineers, 1993.
[2]         W. Zielke, Frequency- Dependent Friction in Transient Pipe flow, Basic Engineering, Vol. 90, No. 1, pp. 109-1338, 1968. doi: 10.1115/1.3605049
[3]         S.Tijsseling, A. Bergant,. Meshless computation of water hammer, Proceedings of 2nd IAHR International meeting of the workgroup on cavitation and dynamic problems in hydraulic machinery and systems. Timisoara, Romania, pp. 65-77, 2007. doi:10.1016/j.jnnfm.2013.04.007.
[4]         H. Shamloo, R. Norooz and M. Mousavifard, A review of one-dimensional unsteady friction models for transient pipe flow, Proceedings of The Second National Conference on Applied Research in Science and Technology, Faculty of Science, Cumhuriyet University, pp. 2278-2288, 2015. doi:10.1016/j.jnnfm.2013.04.007.
[5]         A. Vardy, J. Brown, Efficient approximation of unsteady friction weighting functions, Hydraulic Engineering, Vol. 130, No. 11, pp. 1097-1107, 2004. doi: 10.1061/(ASCE)0733-9429
[6]         E.M.Wahba, Non-Newtonian fluid hammer in elastic circular pipes: Shear-thinning and shear-thickening effects, Non-Newtonian Fluid Mechanics, Vol. 198, No. 10, pp. 24-30, 2013. doi:10.1016/j.jnnfm.2013.04.007.
[7]         M. Norouzi, A. Anaraki Haji Bagheri, M. H. Sedaghat, M. M. Shahmardan, Numerical study of three dimensional instability of nonlinear viscoelastic fluid flow around a sphere, Modares Mechanical Engineering, Vol. 17, No. 12, pp. 213-222, 2018 (in Persian .( doi:20.1001.1.23223278.1402.12.1.4.3
[8]         S. Mora, M. Manna, From viscous fingering to elastic instabilities, Non-Newtonian Fluid Mechanics, Vol. 173, pp. 30-39, 2012. doi: 10.1016/j.jnnfm.2012.01.010
[9]         R. J. Poole, M. A. Alves, P. J. Oliveira, F. T. Pinho, Plane sudden expansion flows of viscoelastic liquids, Non-Newtonian Fluid Mechanics, Vol. 146, pp. 79–91, 2007. 10.1016/j.jnnfm.2006.11.001
[10]       H. Shokri, M. Kayhani, M. Norouzi, Nonlinear simulation and linear stability analysis of viscous fingering instability of viscoelastic liquids, Physics of Fluids, Vol. 29, No. 3, pp. 033101, 2017. doi: 20.1001.1.23223278.1401.11.2.2.6.
[11]       H. Shokri, M. Kayhani, M. Norouzi, Nonlinear simulation of viscoelastic fingering instability, Modares Mechanical Engineering, Vol. 16, No. 8, pp.47-54, 2016. (in Persian .( doi:20.1001.1.23223278.1402.12.1.4.3
[12]       R. B. Bird, R. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids. Vol. 1: Fluid Mechanics, pp.588-634, Wiley, 1987.
[13]       E.M.Wahba, Runge–Kutta time-stepping schemes with TVD central differencing for the water hammer equations, Numerical Methods in Fluids, Vol. 52, No. 5, pp.571-590, 2006. doi:10.1016/j.jnnfm.2013.04.007.
[14]       M.S. Ghidaoui, M. Zhao, D.A. McInnis and D.H. Axworthy, A review of water hammer theory and practice, Applied Mechanics. Reviews, Vol. 58, No. 49, pp. 49-76, 2005. doi: 10.1115/1.1828050.
[15] S. Mandani, M. Norouzi and M.M. Shahmardan        “An experimental investigation on impact process of Boger drops onto solid surfaces” Korea-Australia Rheology J, 30, pp. 99, 2018. doi: 10.1007/s13367-018-0011-0
[16]       J. C. Maxwell, The Scientific Letters and Papers of James Clerk Maxwell, pp.1846-1862, CUP Archive, Cambridge, Cambridge university press, 1990. doi:10.1017/S0007087405337538.[17] T. Belytschko, Y. Krongauz, D. Organ and M. Fleming, Meshless methods: an overview and recent developments, Computer Methods in Applied Mechanics and Engineering, Vol. 139, pp. 3–47, 1996. doi: 10.1016/S0045-7825(96)01078-X.
[18]       M.H. Afshar, M. Lashckarbolok, Collocated discrete least-squares (CDLS) meshless method: Error estimate and adaptive refinement, Numerical Methods in Fluids, Vol. 56, No. 10, pp. 1909–1928, 2008. doi: 10.1016/j.scient.2012.09.004.
[19]       B. Norouzi, A. Ahmadi, M. Lashkarbolouk & M. Noro
uzi, "Numerical solution of water hammer phenomenon by Collocated Discrete Least Squares method". Journal of Water and Soil Conservation, Vol. 25, No. 3, pp. 1-23, doi: 10.22069/jwsc.2018.14532.2936.
[20]       S. Alimohammadian, M. Hashemabadi, S. Ghasemlooy, H. Parhizkar & J. Pirkandi, “Investigation of effect of geometric structure on two phase flow heat transfer in microchannels”, Scientific Journal of Fluid Mechanics and Aerodynamics, Vol. 11, No. 2, pp. 11-23, 2023. (in Persian .( doi: 20.1001.1.23223278.1401.11.2.2.6.
[21]       M.K.Moayyedi, F.Bigdeloo, “Direct Numerical Simulation of Single Layer Quasi-Geostrophic Ocean Circulation”, Scientific Journal of Fluid Mechanics and Aerodynamics, Vol. 12, No. 1, pp. 39-51,2024. (in Persian .( doi:20.1001.1.23223278.1402.12.1.4.3
 [22]      E.L. Holmboe, W.T. Rouleau, The effect of viscous shear on transients in liquid lines, Basic Engineering, Vol. 89, No. 1, pp. 174–180, 1967. doi: 10.1115/1.3609549
[23]       A. Ghahremani, A. Keshavarz, “Implementation of an adaptive thermodynamic fault model to compensate the gas turbine degradation”, Scientific Journal of Fluid Mechanics and Aerodynamics, Vol. 12, No. 1, pp. 111-128,2024. (in Persian .( doi: 20.1001.1.23223278.1402.12.1.9.8.
 [24] B. Norouzi, A. Ahmadi, M. Norouzi & M. Lashkarbolouk, “Numerical modeling of the fluid hammer phenomenon of viscoelastic flow in pipes”, Journal of the Brazilian Society of Mechanical Sciences and Engineering. Springer, Vol. 41, No. 543, pp. 1-14, 2019, doi: 10.1007/s40430-019-2046-7.
[25]. B. Norouzi, A. Ahmadi, M. Norouzi & M. Lashkarbolouk, "Investigating the Effect of Reynolds Number on Non-Newtonian Fluid-Hammer in Laminar Flow”, Scientific Journal of Fluid Mechanics and Aerodynamics, Vol. 8, No. 2, 2020. (in Persian .( doi:20.1001.1.23223278.1402.12.1.4.3
[26] B. Norouzi, A. Ahmadi, M. Norouzi & M. Lashkarbolouk, "Fluid-Structure Interaction During Viscoelastic Fluid Hammer Phenomenon in the Pipes". AUT Journal of Mechanical Engineering, Vol. 6, No. 1, pp. 95-112, doi: 10.22060/ajme.2021.20217.5994.
[27] B. Norouzi; A. Ahmadi; M. Norouzi; M. LashkarBolook. "Modeling of an Upper-Convected-Maxwell Fluid Hammer Phenomenon in Pipe System". AUT Journal of Mechanical Engineering, Vol. 4, No. 1, pp. 31-40, 2020, doi: 10.22060/ajme.2019.15527.5778.
[28] B. Arezoomand, H. Parhizgar, A. Tarabi, “Investigate of Septum Type Effects and Septum Density of Lattice Fin Partitions On Aerodynamics Coefficient”, Scientific Journal of Fluid Mechanics and Aerodynamics, Vol. 8, No. 2, pp. 153-168,2018. (in Persian) doi:20.1001.1.23223278.1399.9.1.1.9..(