شبیه‌سازی عددی تأثیر پارامترهای هندسی صدا‌خفه‌کن روی عملکرد آکوستیکی آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه ملایر، ملایر، ایران

2 کارشناسی ارشد،دانشگاه ملایر، ملایر ، ایران

چکیده

در این مطالعه، به‌منظور بررسی و کنترل صدای خروجی از صداخفه­کن شبیه­سازی عددی سه­بعدی جریان آشفته درون صداخفه­کن با شرایط مرزی مختلف انجام شده است. این تحلیل با استفاده از روش حجم محدود[1] و نرم‌افزار انسیس انجام شده است. هدف از انجام این پژوهش بررسی تأثیر پارامترهای هندسی در اختلاف تراز صوت بین ورودی و خروجی صداخفه­کن می‌باشد. هندسه دیفیوزر و استفاده از پشم سنگ که نوعی جاذب صوت است تأثیر حائز اهمیتی در کاهش صدای خروجی دارد به طور یکه بر مبنای اکثر استاندارد­ها از جمله استاندارد AMCA  صدا در فاصله 1 متری از dB  85 نباید بیش­تر باشد. در این پژوهش چهار پارامتر متغیر هندسی که عبارت­اند از قطر سوراخ­های دیفیوزر، گام بین سوراخ­ها، تعداد سوراخ­ها و همچنین طول ناحیه پشم سنگ مورد ارزیابی قرار گرفته است. نتایج نشان می‌دهد که افزایش قطر سوراخ­های دیفیوزر، گام بین سوراخ­ها، تعداد سوراخ­ها باعث می­شود که جت‌های صوت خروجی از سوراخ­های دیفیوز بیش­تر و انرژی جریان کم­تر شود که موجب کاهش افت تراز صوت بین ورودی و خروجی صداخفه­کن می‌شود. همچنین افزایش طول ناحیه پشم سنگ باعث افزایش طول جریان شده و انرژی صوت مقدار بیش­تری مستهلک می‌شود و در نهایت تراز صوت بیش­تر کاهش می­یابد. در نهایت می­توان نتیجه گرفت که بیش­ترین، کاهش تراز صوت مربوط به قطر سوراخ 10 میلی­متر، گام 30 میلی­متر، تعداد سوراخ 20 و طول ناحیه پشم سنگ 1400 میلی­متر است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical simulation of the effect of geometric parameters of silencer on its acoustic performance

نویسندگان [English]

  • Ali Shahrjerdi 1
  • faezeh nazari 2
1 Assistant Professor, Malayer University, Malayer, Iran
2 department of mechanical engineering, malayer university, malayer, iran
چکیده [English]

In this study, a three-dimensional numerical simulation of turbulent flow inside a sound attenuator was conducted to investigate and control the outlet sound. The analysis was performed using the finite volume method and ANSYS software. The aim of this research was to examine the effect of geometric parameters on the sound pressure difference between the inlet and outlet of the sound attenuator. The geometry of the diffuser and the use of rock wool, which is a type of sound absorber, have a significant impact on reducing the outlet sound, as most standards, including the AMCA standard, specify that the sound level at a distance of 1 meter should not exceed 85 dB. In this study, four geometric parameters were evaluated, including the diameter of the diffuser holes, the spacing between the holes, the number of holes, and the length of the rock wool region. The results indicate that increasing the diameter of the diffuser holes, the spacing between the holes, and the number of holes leads to higher sound jets exiting the diffuser holes and lower flow energy, resulting in a reduction in the sound pressure difference between the inlet and outlet of the sound attenuator. Additionally, increasing the length of the rock wool region increases the length of the flow path and consumes more sound energy, ultimately resulting in a greater reduction in the sound pressure difference. In conclusion, the maximum reduction in sound pressure difference is associated with a hole diameter of 10 millimeters, a hole spacing of 30 millimeters, a number of holes of 20, and a rock wool length of 1400 millimeters.

کلیدواژه‌ها [English]

  • Silencer
  • Diffuser
  • noise pollution control
  • sound level reduction
  • sound absorber

Smiley face

https://creativecommons.org/licenses/by/4.0/

  1. Lazalde-Crabtree H, "Design of steam silencers for geothermal applications," Geothermics, vol. 14, no. 2, pp. 335-41, 1985/01/01/ 1985.Doi:https://doi.org/10.1016/0375-6505(85)90072-0

    https://www.sciencedirect.com/science/article/pii/0375650585900720

    1. Zhuravlev E, Chugunkov D, Seyfelmlyukova G, editors. Improving the acoustic efficiency of laminated dissipative noise silencers for boiler gas-air paths. E3S Web of Conferences; 2019: EDP Sciences;
    2. Tan W-H, Khor T, Zunaidi N, "Development of acoustical simulation model for muffler," GEOMATE Journal, vol. 11, no. 24, pp. 2385-90, 2016.
    3. Chang Y-C, Chiu M-C, Wu M-R, "Acoustical simulation of a muffler internally inserted with an extended tube using the FEM," Journal of Information and Optimization Sciences, vol. 40, no. 1, pp. 47-62, 2019.
    4. Tupov V, editor Principles of design for intake noise silencers to meet acoustic and power requirements of two-stroke carburetor engines. AIP Conference Proceedings; 2022: AIP Publishing LLC;
    5. Kakade SK, Sayyad F, "Optimization of exhaust silencer for weight and size by using noise simulation for acoustic performance," world wide web, vol. 10, no. 4, p. 11, 2017.
    6. Rajali A, Jamian R, "Design and Fabrication of Noise Silencer for Grass Trimmer," Progress in Engineering Application and Technology, vol. 2, no. 1, pp. 912-23, 2021.
    7. Zhang Y, Wu P, Ma Y, Su H, Xue J, "Analysis on acoustic performance and flow field in the split-stream rushing muffler unit," Journal of Sound and Vibration, vol. 430, pp. 185-95, 2018.
    8. Alkmim M, Cuenca J, De Ryck L, Göransson P, editors. Model-based acoustic characterisation of muffler components and extrapolation to inhomogeneous thermal conditions. 28th International Conference on Noise and Vibration Engineering, ISMA 2018 and 7th International Conference on Uncertainty in Structural Dynamics, USD 2018; Leuven; Belgium; 17 September 2018 through 19 September 2018; 2018: KU Leuven-Departement Werktuigkunde;
    9. Talebitooti R, Choudari Khameneh A, "Modeling and simulation of the acoustic behavior of a muffler in a passenger car exhaust system," Journal of Acoustical Engineering Society of Iran, vol. 6, no. 1, pp. 39-45, 2018.
    10. Jena D, Panigrahi S, "Numerically estimating acoustic transmission loss of a reactive muffler with and without mean flow," Measurement, vol. 109, pp. 168-86, 2017.
    11. Ranjbar M, Dalkılıç B, Çalık E, Arslan MC, Arslan H, editors. On muffler design for transmitted noise reduction. International Symposium on Multidisciplinary Studies and Innovative Technologies Gaziosmanpaşa University Tokat/Turkey; 2017
    12. Kaiser R, Hinterberger C, Ezquerra Larodé F, "Transient Simulation of Flow Noise in Exhaust Mufflers," MTZ worldwide, vol. 80, no. 11, pp. 70-7, 2019.
    13. Asdrubali F, Schiavoni S, Horoshenkov K, "A review of sustainable materials for acoustic applications," Building Acoustics, vol. 19, no. 4, pp. 283-311, 2012.
    14. Moretti E, Belloni E, Agosti F, "Innovative mineral fiber insulation panels for buildings: Thermal and acoustic characterization," Applied Energy, vol. 169, pp. 421-32, 2016.
    15. Caniato M, D'Amore GKO, Kaspar J, Gasparella A, "Sound absorption performance of sustainable foam materials: Application of analytical and numerical tools for the optimization of forecasting models," Applied Acoustics, vol. 161, p. 107166, 2020.
    16. Mohammadi B, Safaiyan A, Habibi P, Moradi G, "Evaluation of the acoustic performance of polyurethane foams embedded with rock wool fibers at low-frequency range; design and construction," Applied Acoustics, vol. 182, p. 108223, 2021/11/01/ 2021.Doi:https://doi.org/10.1016/j.apacoust.2021.108223

    https://www.sciencedirect.com/science/article/pii/S0003682X21003170

    1. Contreras JS, Durango JC, Villega JF, "Design and Simulation of the Acoustics of a Vent Silencer for the Natural Gas Transportation Pipeline," Technol Reports Kansai Univ, vol. 62, no. 05, pp. 2561-7, 2020.
    2. Wang C-N, Torng J-H, "Experimental study of the absorption characteristics of some porous fibrous materials," Applied Acoustics, vol. 62, no. 4, pp. 447-59, 2001/04/01/ 2001.Doi:https://doi.org/10.1016/S0003-682X(00)00043-8

    https://www.sciencedirect.com/science/article/pii/S0003682X00000438

    1. Middelberg J, Barber T, Leong S, Byrne K, Leonardi E, editors. Computational fluid dynamics analysis of the acoustic performance of various simple expansion chamber mufflers. Proceedings of Acoustics; 2004
    2. Li XQ, Dong DD, Gu MJ, Wang G, Hu ST, editors. Study on the flow characteristics of the monolithic muffler in train air conditioning duct. Advanced Materials Research; 2012: Trans Tech Publ;
    3. Liu E, Yan S, Peng S, Huang L, Jiang Y, "Noise silencing technology for manifold flow noise based on ANSYS fluent," Journal of Natural Gas Science and Engineering, vol. 29, pp. 322-8, 2016.
    4. Tupov V, Chugunkov D, editors. The mechanism of noise formation and calculation of noise characteristics of underexpanded steam jets. 14th International Congress on Sound and Vibration 2007, ICSV 2007; 2007
    5. Gaj P, Sobczak K, Kopania J, Wójciak K, "Influence of shell shape on flow and acoustic parameters of a steam silencer," Archives of Thermodynamics, pp. 141-54--54, 2021.
    6. Chen W, Lu C, Liu Z, editors. Optimal Design of a 3D Printed Composite Micro-Perforated Silencer for Engine Intake Noise Control. IOP Conference Series: Materials Science and Engineering; 2020: IOP Publishing;
    7. Saeid NH, "Diffuser perforation effects on the performance of a vent silencer," Noise Control Engineering Journal, vol. 61, no. 3, pp. 355-62, 2013.
    8. Fluent A, "Fluent 6.3 Documentation," Fluent Inc, Lebanon, NH, vol. 63, pp. 64-5, 2006.
    9. Lee J-C, Seok H-K, Suh J-Y, "Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing," Acta Materialia, vol. 50, no. 16, pp. 4005-19, 2002.