[1] Miller, G. R., Lewis, G. W., and Hartmann, M. J., 1961, “Shock Losses in Transonic Compressor Blade Rows,” Journal of Engineering for Power, 83(3), pp. 235–241.
[2] Chen, G. T., Greitzer’, E. M., Tan’, C. S., and Marble, F. E., 1990, I Nt AMtHICAN SOCIETY OF MECHANICAL ENGINEERS Similarity Analysis of Compressor Tip Clearance Flow Structure.
[3] Konig, W. M., Hennecke, D. K., and Fottner, L., 1996, Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part II-A Model for Supersonic Flow.
[4] Freeman, C., Rolls, N. A. C., and Plc, R., 1989, A Method for the Prediction of Supersonic Compressor Blade Performance.
[5] Ning, F., and Xu, L., 2001, “Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver With One-Equation Spalart-Allmaras Turbulence Model,” Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery, American Society of Mechanical Engineers.
[6] Strazisar, A. J., 1984, Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry.
[7] R. Taghavi-Zenouz, S. A. and A. R. P., “Aerodynamic Design of Fan and Compressor Assembly for Turbofan Engines of Arbitrary By-Pass Ratio, Based on Streamline Curvature Method-,” pp. 47–58.
[8] Sohrab Hazrati Alisha 1, Hamed Aslanian 2, M. B., “Design of a Single-Stage Axial Passage Compressor with the Help of Software.”
[9] Sieverding, F., Ribi, B., Casey, M., and Meyer, M., 2004, “Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance,” J Turbomach, 126(2), pp. 323–331.
[10] Iyengar, V., and Sankar, L. N., 2012, “Comprehensive Application of a First Principles Based Methodology for Design of Axial Compressor Configurations,” J Turbomach, 134(6), pp. 1–9.
[11] Lei, F., and Zhang, C., 2021, “Applied Sciences Preliminary Optimization of Multi-Stage Axial-Flow Industrial Process Compressors Using Aero-Engine Compressor Design Strategy.”
[12] Sjögren, O., Grönstedt, T., Lundbladh, A., and Xisto, C., 2023, “Fan Stage Design and Performance Optimization for Low Specific Thrust Turbofans,” International Journal of Turbomachinery, Propulsion and Power, 8(4), p. 53.
[13] Sun, Y., Ren, Y.-X., and Fu, S., 2008, THE UNSTEADY LOSS IN ONE-STAGE TRANSONIC COMPRESSOR UNDER PEAK EFFICIENCY AND NEAR STALL CONDITIONS.
[14] Wadia, A. R., and Law, C. H., 1993, Low Aspect Ratio Transonic Rotors: Part 2-Influence of Location of Maximum Thickness on Transonic Compressor Performance.
[15] Altafi, D., Mojaddam, M., and Bastankhah, M., 2023, “Entropy Generation Rate Analysis of Turbocharger Radial Flow Compressor in Range from Surge to Choke,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy.
[16] Suder, K. L., and Celestina, M. L., 1996, Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor.
[17] Altafi, D., Mojaddam, M., Javadi, S., and Mohammadi, M., 2022, “Entropy Generation Analysis of a Turbocharger Centrifugal Compressor in the Range Surge to Choke,” 12th Annual International Conference on IC Engines (ICICE), Tehran.
[18] Altafi, D., Mojaddam, M., and Ghadimi, B., 2022, “Investigation of the Effect of the Geometric Deviations on the Performance of a Radial Flow Compressor Employing Uncertainty Quantification (UQ) and Sensitivity Analysis,” Engine Research, 67(67), pp. 51–63.
[19] Hah, C., Bergner, J., and Schiffer, H.-P., 2008, Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instability in an Axial Transonic Compressor Rotor.
[20] Yamada, K., Funazaki, K., and Sasaki, H., NUMERICAL INVESTIGATION OF RELATION BETWEEN UNSTEADY BEHAVIOR OF TIP LEAKAGE VORTEX AND ROTATING DISTURBANCE IN A TRANSONIC AXIAL COMPRESSOR ROTOR.
[21] Bennington, M. A., Cameron, J. D., Morris, S. C., Legault, C., Barrows, S. T., Chen, J.-P., Mcnulty, G. S., and Wadia, A. R., INVESTIGATION OF TIP-FLOW BASED STALL CRITERIA USING ROTOR CASING VISUALIZATION.
[22] Hah, C., Bergner, J., and Schiffer, H.-P., 2006, Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms.
[23] “Day1993.”
[24] Copenhaver, W. W., and Hah, C., 1997, A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor.
[25] Hah, C., Rabe, D. C., and Wadia, A. R., 2004, “Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor,” Volume 5: Turbo Expo 2004, Parts A and B, ASMEDC, pp. 545–555.
[26] Mayhew, E. R., Hah, C., and Wadia, A. R., 1996, The Effect of Tip Clearance on a Swept Transonic Compressor Rotor.
[27] Burguburu, S., Toussaint, C., Bonhomme, C., and Leroy, G., 2004, “Numerical Optimization of Turbomachinery Bladings,” J Turbomach, 126(1), pp. 91–100.
[28] Hah, C., Puterbaugh Wright-Patterson AFB, S. L., and R Wadia, O. A., CONTROL OF SHOCK STRUCTURE AND SECONDARY FLOW FIELD INSIDE TRANSONIC COMPRESSOR ROTORS THROUGH AERODYNAMIC SWEEP.
[29] Denton, J. D., 2002, THE EFFECTS OF LEAN AND SWEEP ON TRANSONIC FAN PERFORMANCE: A COMPUTATIONAL STUDY.
[30] Wadia, A. R., and Copenhaver, W. W., 1996, An Investigation of the Effect of Cascade Area Ratios on Transonic Compressor Performance.
[31] Chen, N., Zhang, H., Xu, Y., and Huang, W., 2007, “Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor,” Journal of Thermal Science, 16(2), pp. 105–114.
[32] Wang, D. X., He, L., Li, Y. S., and Wells, R. G., 2010, “Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines-Part II: Validation and Application,” J Turbomach, 132(2).
[33] SAEED FAROKHI, P., 2014, Aircraft Propulsion, John Wiley & Sons Ltd, New Delhi, India.
[34] Muchowski, R., and Gubernat, S., 2021, “Influence of Axial Compressor Model Simplification and Mesh Density on Surge Margin Evaluation,” Advances in Science and Technology Research Journal, 15(3), pp. 243–253.
[35] H K Versteeg and W Malalasekera, 2005, An Introduction to Computational Fluid Dynamics.
[36] Romanova, D., Ivanov, O., Trifonov, V., Ginzburg, N., Korovina, D., Ginzburg, B., Koltunov, N., Eglit, M., and Strijhak, S., 2022, “Calibration of the K-ω SST Turbulence Model for Free Surface Flows on Mountain Slopes Using an Experiment,” Fluids, 7(3), p. 111.
[37] Könözsy, L., 2019, “The K- $$\omega $$ ω Shear-Stress Transport (SST) Turbulence Model,” Fluid Mechanics and Its Applications, Springer Netherlands, pp. 57–66.
[38] René Van den Braembussche, 2019, Design and Analysis of Centrifugal Compressors, co-publication between ASME Press and JohnWiley & Sons Ltd.