طراحی و بهینه‌‌سازی آیرودینامیکی کمپرسور 10 مرحله‌‌‌‌ای و فن 3 مرحله‌‌‌‌ای یک موتور توربوفن با نسبت کنارگذر کم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، دانشگاه صنعتی مالک اشتر،تهران،ایران

2 دانشیار، دانشگاه صنعتی مالک اشتر،تهران، ایران

3 استادیار، دانشگاه صنعتی مالک اشتر،تهران،ایران

چکیده

در این مطالعه، بخش تراکم یک موتور توربوفن با نسبت کنارگذر کم طراحی و بهینه شده‌است. این موتور از یک فن محوری سه مرحله‌‌‌‌ای و یک کمپرسور محوری ده مرحله‌‌‌‌ای برای تراکم بهره می‌برد. در این مطالعه، ابتدا با یک نرم افزار تجاری و بر اساس نتایج تحلیل چرخه موتور، طراحی مقدماتی قسمت تراکم موتور به انجام رسیده، سپس عملکرد طرح، با استفاده از دینامیک سیالات محاسباتی مدل‌سازی شده‌است. این چنین، عملکرد طرح ارائه‌‌‌‌‌شده توسط نرم افزار ارزیابی شده و درصد انحراف آن از مطلوب تحلیل سیکل محاسبه شده‌است. به کمک تحقیقات قبلی، سپس طرح اولیه بهینه گشته تا با کاهش انحرافات عملکردی، دبی و نسبت فشار مورد نظر به دست آید. نتایج نشان می‌دهد که نرم‌افزار تجاری قادر به تولید طرح‌هایی در حاشیه ۲۰ تا ۳۰ درصدی نقطه طراحی مورد نظر است. همچنین می‌توان خطای طراحی را از طریق بهینه‌‌سازی به کمتر از 20 درصد کاهش داد. در طول بهینه‌‌سازی، دبی جرمی‌فن از 74 به 86 کیلوگرم بر ثانیه افزایش یافت، در حالی که دبی کمپرسور از 57 به 59 کیلوگرم بر ثانیه افزایش داشته‌است. نسبت فشار فن نیز از 46/2 به 54/2 و نسبت فشار کمپرسور از 24/5 به 34/6 افزایش یافته‌است. این مطالعه با بهینه‌‌سازی بر اساس یافته های قبلی، توانست راندمان فن را 7/0 درصد و راندمان کمپرسور را 5/1 درصد افزایش دهد. کاهش قدرت امواج ضربه‌‌‌‌ای در محفظه فن و کمپرسور موجب چنین افزایشی شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Aerodynamic design and optimization of a 10 stage compressor and a 3 stage fan of a low bypass ratio turbofan engine

نویسندگان [English]

  • Mostafa Mahmoodi 1
  • Jamasb Pirkandi 2
  • Mehdi Jahromi, 3
1 Associate Professor, Malek Ashtar University of Technology, Tehran, Iran
2 Associate Professor, Malek Ashtar University of Technology, Tehran, Iran
3 Assistant Professor, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

 

 





This research focuses on the design and optimization of the compression section of a low bypass ratio turbofan engine. The engine employs a three-stage axial fan and a ten-stage axial compressor for compression. Initially, a commercial software was used to conduct a preliminary design of the engine’s compression section based on engine cycle analysis results. The design’s performance was then modeled using computational fluid dynamics. This allowed for the evaluation of the software’s design performance and the calculation of its deviation percentage from the desired cycle analysis. Subsequently, insights from previous studies were utilized to optimize the initial design. The goal was to achieve the desired flow rate and pressure ratio by minimizing performance deviations. The findings indicate that the commercial software can generate designs that are within 20-30% of the desired design point. Moreover, it is feasible to reduce the design error to less than 20% through optimization. During the optimization process, the fan’s flow rate increased from 74 to 86 kg/s, while the compressor’s flow rate rose from 57 to 59 kg/s. The pressure ratio of the fan also increased from 2.46 to 2.54, and the compressor’s pressure ratio rose from 5.24 to 6.34. By leveraging previous research for optimization, the study managed to enhance the fan’s efficiency by 0.7% and the compressor’s efficiency by 1.5%. This increase was attributed to the reduction in shock waves in the fan and compressor chamber.

کلیدواژه‌ها [English]

  • axial compressor
  • axial fan
  • turbofan engine
  • aerodynamic optimization

Smiley face

Miller GR, Lewis GW, Hartmann, MJ. Shock Losses in Transonic Compressor Blade Rows. Journal of Engineering for Power.1961;83(3): 235-241.         DOI        10.1115/1.3673182
[2] Chen GT, Greitzer’ EM, Tan’ CS, Marble FE. Similarity Analysis of Compressor Tip Clearance Flow Structure. J. Turbomach. 1991; 113(2): 260-269.      DOI     10.1115/1.2929098
[3] Konig WM, Hennecke DK, Fottner L. Improved Blade Profile Loss and Deviation Angle Models for Advanced Transonic Compressor Bladings: Part II-A Model for Supersonic Flow. J. Turbomach. Jan 1996; 118(1): 81-87.      DOI   10.1115/1.2836610
[4] Freeman C, Cumpsty N. A Method for the Prediction of Supersonic Compressor Blade Performance. published  1989.   DOI  10.1115/89-GT-326
 [5] Ning F, Xu L. Numerical Investigation of Transonic Compressor Rotor Flow Using an Implicit 3D Flow Solver With One-Equation Spalart-Allmaras Turbulence Model. ASME Turbo Expo 2001.     DOI     10.1115/2001-GT-0359
[6] Strazisar AJ. Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry. Twenty-ninth Annual International Gas Turbine Conference sponsored by the American Society of Mechanical Engineers Amsterdam, The Netherlands, June 3-7, 1984. Report Number: NASA-TM-83555
[8] Hazrati Alisha S, Aslanian H, Broman M. Design of a Single-Stage Axial Passage Compressor with the Help of Software. 16th International Conference of the Iranian Aerospace Society.2016. (in persion).
[9] Sieverding F. Ribi B, Casey M. Meyer M. Design of Industrial Axial Compressor Blade Sections for Optimal Range and Performance J. Turbomach. 2004; 126(2): 323-331.  DOI  10.1115/1.1737782
[10] Iyengar V.  Sankar  L. Comprehensive Application of a First Principles Based Methodology for Design of Axial Compressor Configurations.  J. Turbomach. 2012; 134(6): 061035.    DOI    10.1115/1.4006301
[11] Lei F. Zhang C. Preliminary Optimization of Multi-Stage Axial-Flow Industrial Process Compressors Using Aero-Engine Compressor Design Strategy. Appl. Sci. 2021; 11(19), 9248.  DOI   10.3390/app11199248
[12] Sjögren O. Grönstedt T. Lundbladh A. Xisto C. Fan Stage Design and Performance Optimization for Low Specific Thrust Turbofans. Int. J. Turbomach. Propuls. Power. 2023; 8(4), 53. DOI  10.3390/ijtpp8040053
[17] Sun Y, Ren Y, Fu S. The Unsteady Loss in One-Stage Transonic Compressor Under Peak Efficiency and Near Stall Conditions. Conference: ASME Turbo Expo 2008. DOI 10.1115/GT2008-51019
[18] Wadia AR, Law CH. Low Aspect Ratio Transonic Rotors: Part 2-Influence of Location of Maximum Thickness on Transonic Compressor Performance. J. Turbomach. 1993; 115(2): 226-239 . DOI  10.1115/1.2929227
[19] Altafi D, Mojaddam M, Bastankhah M. Entropy Generation Rate Analysis of Turbocharger Radial Flow Compressor in Range from Surge to Choke. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and Energy 238(3). DOI 10.1177/09576509231216187
[20] Suder KL, Celestina ML. Experimental and Computational Investigation of the Tip Clearance Flow in a Transonic Axial Compressor Rotor. J. Turbomach. 1996; 118(2): 218-229       DOI 10.1115/1.2836629
[21] Altafi D, Mojaddam M, Javadi S, Mohammadi M . Entropy Generation Analysis of a Turbocharger Centrifugal Compressor in the Range Surge to Choke. Conference: 12th Annual International Conference on IC Engines (ICICE). At: Tehran. 2022.(in persian)
[22] Altafi D, Mojaddam M, Ghadimi B. Investigation of the Effect of the Geometric Deviations on the Performance of a Radial Flow Compressor Employing Uncertainty Quantification (UQ) and Sensitivity Analysis. Engine Research, 67(67): 51–63. DOI 10.22034/er.2022.697920
[23] Hah C, Bergner J, Schiffer HP. Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instability in an Axial Transonic Compressor Rotor. Conference: ASME Turbo Expo 2008. DOI 10.1115/GT2008-50105
 [24] Yamada K, Funazaki K, Sasaki H. Numerical Investigation of Relation Between Unsteady Behavior of Tip Leakage Vortex and Rotating Disturbance in a Transonic Axial Compressor Rotor. ASME Turbo Expo 2008. DOI 10.1115/GT2008-50779
[25] Bennington MA, Cameron JD, Morris SC, Legault  C, Barrows ST, Chen P, Mcnulty  GS,  Wadia AR. Investigation of Tip-Flow Based Stall Criteria Using Rotor Casing Visualization. ASME Turbo Expo 2008. DOI  10.1115/GT2008-51319
[26] Hah C, Bergner J, Schiffer HP. Short Length-Scale Rotating Stall Inception in a Transonic Axial Compressor: Criteria and Mechanisms. Conference: ASME Turbo Expo 2006. DOI 10.1115/GT2006-90045
[27] Copenhaver WW, Ha C. A Three-Dimensional Shock Loss Model Applied to an Aft-Swept, Transonic Compressor Rotor. J. Turbomach. Jul 1997; 119(3): 452-459. DOI   10.1115/1.2841144
[28] Hah C, Rabe DC, Wadia AR. Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor. Turbo Expo 2004, Parts A and B, ASMEDC, pp. 545–555. DOI 10.1115/GT2004-53867
[29] Mayhew ER, Hah C,  Wadia AR. The Effect of Tip Clearance on a Swept Transonic Compressor Rotor. J. Turbomach. Apr 1996; 118(2): 230-239.     DOI 10.1115/1.2836630
[30] Burguburu S, Toussaint C, Bonhomme C, Leroy G. Numerical Optimization of Turbomachinery Bladings.  J. Turbomach. Jan 2004, 126(1): 91-100 . DOI  10.1115/1.1645869
[31] Hah C, Puterbaugh SL, Wadia AR. Control of Shock Structure and Secondary Flow Field Inside Transonic Compressor Rotors Through Aerodynamic Sweep. ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. DOI  10.1115/98-GT-561
[32] Denton JD, Xu L. The Effects of Lean and Sweep on Transonic Fan Performance. ASME Turbo Expo 2002. DOI   10.1115/GT2002-30327
[33] Wadia AR Copenhaver WW. An Investigation of the Effect of Cascade Area Ratios on Transonic Compressor Performance. J. Turbomach. 1996; 118(4): 760-770. DOI  10.1115/1.2840932
[34] Chen N, Zhang H, Xu Y, Huang W. Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor. Journal of Thermal Science.2007;  16(2):105-114. DOI 10.1007/s11630-007-0105-3
[35] Wang DX, He L, Li YS, Wells RG. Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines-Part II: Validation and Application. J Turbomach,2010;  132(2). DOI 10.1115/1.3072498
[36] Farokhi S ., Aircraft Propulsion . John Wiley & Sons Ltd, New Delhi, India. 2014. ISBN: 978-1-1-118-80677-7
[37] Muchowski R, Gubernat S. Influence of Axial Compressor Model Simplification and Mesh Density on Surge Margin Evaluation. Advances in Science and Technology Research Journal. 2021; 15(3. 243–253. DOI 10.12913/22998624/140541
[38] Versteeg HK, Malalasekera W. An Introduction to Computational Fluid Dynamics. earson Education Limited. 2007. ISBN 0131274988, 9780131274983
[39]Romanova D, Ivanov O, Trifonov V, Ginzburg N, Korovina D, Ginzburg B, Koltunov N, Eglit M, Strijhak S, .Calibration of the K-ω SST Turbulence Model for Free Surface Flows on Mountain Slopes Using an Experiment. Fluids. 2022: 7(3), 111.    DOI 10.3390/fluids7030111
[40] Könözsy L. The Kω Shear-Stress Transport (SST) Turbulence Model. Fluid Mechanics and Its Applications, Springer Netherlands. 2019; 57–66. DOI 10.1007/978-3-030-13543-0_3
[38] René Van den Braembussche. Design and Analysis of Centrifugal Compressors. co-publication between ASME Press and JohnWiley & Sons Ltd.2019. ISBN: 978-1-119-42409-3
دوره 13، شماره 1 - شماره پیاپی 33
بهار و تابستان 1403
مرداد 1403
صفحه 131-147
  • تاریخ دریافت: 16 اردیبهشت 1403
  • تاریخ بازنگری: 18 خرداد 1403
  • تاریخ پذیرش: 16 تیر 1403
  • تاریخ انتشار: 01 مرداد 1403