بررسی تجربی اثر جریان انتهای لوله تشدید هارتمن-اسپرنگر بر عملکرد گرمایشی لوله

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه علم و صنعت ایران، تهران، ایران

2 دانشیار، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در لوله هارتمن - اسپرنگر، متشکل از یک نازل همگرا و یک لوله با انتهای بسته، با برقراری جریان فرومنبسط توسط نازل همگرا و ورود آن در لوله، طی یک فرآیند سیالاتی، گرمایش قابل‌توجهی ایجاد شده و دمای گاز در بخش انتهای لوله به‌شدت بالا می‌رود. در پژوهش حاضر، با ساخت یک مجموعه‌آزمون تجربی و با انتخاب پارامترهای مشخص، تأثیر وجود نشتی در انتهای لوله بر عملکرد گرمایشی آن بررسی شد. اثر سه پارامتر مستقل در این لوله، شامل فشار گاز در بالادست نازل، فاصله بین نازل و لوله، و قطر سوراخ انتهایی لوله، مطالعه شده است. برای یک مقدار مشخص قطر لوله، دو فاصله 3 و 5 برابری قطر نازل، سه مقدار فشار 5، 6، و 8 bar و هفت مقدار مختلف برای قطر سوراخ انتهای لوله، به‌عنوان دامنه متغیرهای مستقل انتخاب شدند. نتایج نشان می‌دهند که وجود سوراخ در بخش انتهایی لوله، موجب کاهش دمای بیشینه قابل حصول خواهد شد. علاوه بر این، با افزایش فشار، در حالتی که شرایط تشدید روی دهد، دما افزایش خواهد یافت. همچنین نشان‌داده‌شده که وجود سوراخ در انتهای لوله بر مشخصات صوت منتشره، تأثیری نداشته است. از این پدیده می‌توان در ایستگاه‌های کاهش فشار گاز طبیعی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study of the effect of Hartmann-Sprenger resonance tube end flow on tube heating performance

نویسندگان [English]

  • Mohammad Younesi 1
  • -Hojat Ghassemi 2
1 PhD student, Iran University of Science and Technology, Tehran, Iran
2 Associate Professor, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In the Hartmann-Sprenger tube, consisting of a converging nozzle and a closed-end tube, by establishing the under-expanded flow through the converging nozzle and entering it in the tube, during a fluid process, significant heating is created and the gas temperature at the end of the tube strongly goes up. In the current research, the effect of leakage at the end of the tube on its heating performance was investigated by constructing an experimental test set and selecting specific parameters. The effect of three independent parameters in this tube, including the gas pressure upstream of the nozzle, the distance between the nozzle and the tube, and the diameter of the hole at the end of the tube have been studied. For a specific value of the tube diameter, two intervals of 3 and 5 times for the nozzle diameter, three pressure values of 5, 6, and 8 bar, and seven different values for the hole diameter were selected as the range of independent variables. The results show that a hole at the end of the tube will reduce the maximum temperature that can be achieved. In addition, as the pressure increases, the temperature will increase in the case of resonance conditions. It has also been shown that a hole at the end of the tube does not affect the characteristics of the diffused sound. This phenomenon can use in natural gas pressure reduction stations.

کلیدواژه‌ها [English]

  • Resonance Tube
  • Hartmann-Sprenger
  • Gas Dynamic Heating
  • Natural Gas Transmission
  • Gas Pressure Reduction Station

Smiley face

 

  1. Iranian Gas Standard, IGS-m-PM-106(2), NIGC, 2021.
  2. Mahmoodi M, Gorji M. An experimental study on gas line break detection system in quarter turn actuators. The Scientific Journal of Fluid Mechanics and Aerodynamics. 2017;5(1).(InPersian) https://dor.isc.ac/dor/20.1001.1.23223278.1395.5.1.6.6
  3. Hartmann J. On a new method for the generation of sound waves. Physical Review. 1922;20.
  4. Sprenger H. On thermal effects in resonance tubes. Mitt. Eidgenoss. Tech. Hoch. hst. Aerodynamik. 1954;21.
  5. Thompson P A. Resonance tubes. PhD Thesis. Massachusetts Institute of Technology. 1960.
  6. Phillips R, Pauli A J. Resonance tube ignition of hydrogen-oxygen mixtures. Lewis Research Center. 1971.
  7. Kuptsov V M, Ostroukhova S I, Filippov K N, Pressure fluctuations and heating of a gas by the inflow of a supersonic jet into a cylindrical cavity. Mekhanika Zhidkostii Gaza. 1977;5.
  8. Pishevar I A, Ahmadi Kia H. Interaction of the exiting plume from fixed and moving nozzles with a rigid wall. The Scientific Journal of Aerospace Mechanics. 2007;3(1).  (In Persian)
  9. Sarohia V, Back L H. Experimental investigation of flow and heating in resonance tube. Journal of Fluid Mechanics. 1979;94.
  10. Parsa E, Afzali B, Karimi H. Experimental investigation of the effective parameters on the performance of Hartmann-Sprenger tube. 13th Conference of Iranian Association of Aerospace. 2014. (In Persian)
  11. Thethy B, Tairych D, Edgington M D. Mechanics of the influx phase in the jet regurgitant mode of a powered resonance tube. International Journal of Aeroacoustics. 2019;18(2-3). DOI 10.1177/1475472X19840001
  12. Lee J, Lim D, Seo S, Kang S H. Numerical analysis of the thermal characteristics of a gas-dynamic ignition system. Journal of Mechanical Science and Technology. 2018;32(5). DOI 1007/s12206-018-0450-z
  13. Afzali B, Karimi H. Effect of pipe geometry and material properties on flow characteristics and thermal performance of a conical Hartmann–Sprenger tube. The Brazilian Society of Mechanical Sciences and Engineering. 2017. DOI 10.1007/s40430-017-0843-4
  14. Bauer C, Lungu P, Haidn O J. Numerical investigation of a resonance ignition system. 8th European Conference for Aeronautics and Space Sciences. 2019. DOI 10.13009/EUCASS2019-360
  15. Bouch D J, Cutler A D. Investigation of a Hartmann-Sprenger tube for passive heating of scramjet injectant Gases. 41st AIAA Aerospace Sciences Meeting. 2003.
  16. Dimitrieva А S, Schipachev А М. Application of the resonant energy separation effect at natural gas reduction points in order to improve the energy efficiency of the gas distribution system. Journal of Mining Institute. 2021;248. DOI 10.31897/PMI.2021.2.9
  17. Belousov A, Lushpeev V, Sokolov A, Sultanbekov R, Tyan Y, Ovchinnikov E, Shvets A, Bushuev V, Islamov S. Hartmann–Sprenger energy separation effect for the quasi-isothermal pressure reduction of natural gas: feasibility analysis and numerical simulation. Energies. 2024;17.
  18. Shapiro A H. Shock waves and dissipation in a resonance tube. J Aerospace Sci. 1959;26(10).
  19. Shapiro A H. On the maximum attainable temperature in resonance tubes. J Aerospace Sci. 1960;27(1).
  20. Khodkameh M, Dolati M, Amanifard F, Abdollahzadehsangroudi N. Numerical investigation of heat and fluid features on a flat plate affected by a self-oscillator impingement jet, The Scientific Journal of Fluid Mechanics and Aerodynamics. 2024;12(2). (In Persian) https://dorl.net/dor/1001.1.23223278.1402.12.2.8.9
  21. Hojaji M, Soltani M R, Taeibi-Rahni M. Investigation of supersonic jet into compressible subsonic cross flow on the surfaces around the jet. The Scientific Journal of Fluid Mechanics and Aerodynamics. 2012;3(3). (In Persian)
  22. Vrebalovich T. Resonance tubes in a supersonic flow field. Report No. 32.378. Jet Propulsion Lab California Inst. of Tech. 1962.
  23. Wilson J, Resler E L. A mechanism of resonance tubes. Journal of the Aerospace Science. 1959;7.
  24. Brocher M C. Study of thermal phenomena in a Hartmann–Sprenger tube. NASA Technical Note. No: TTF-14796. 1974.
  25. Fouladi N, Mohammadi A, Rezaei H. Numerical investigation of pre-evacuation influences of second throat exhaust diffuser. The Scientific Journal of Fluid Mechanics and Aerodynamics. 2017;5(2). (In Persian) https://dorl.net/dor/1001.1.23223278.1395.5.2.5.7
  26. Farnia M A, Ebrahimi R, Mehrzad S. Presenting a multi-block numerical code to study the flow inside hyper expanded nozzles in operational conditions. The Scientific Journal of Aerospace Mechanics. 2007;3(2).(InPersian)
  27. Bogdanov V. Contemporary achievements in the field of acoustic ignition systems. International Conference on Industrial Engineering. 2015. DOI1016/j.proeng.2015.12.040
  28. Elvander E, Fisher C. Gaseous oxygen resonance igniter. F23Q13/00 Patent US6966769B2, 2005.
  29. Younesi M, Ghassemi H. Investigating the fluctuating nature of flow in the Hartmann-Sprenger tube. Modares Mechanical Engineering 2024;24(6). URL http://mme.modares.ac.ir/article-15-74867-fa.html
  30. Christopher W, Tam K. Supersonic jet noise. Annu. Rev. fluid mech. 1995;27