بررسی اثر قطر دیسک ارتعاشی حفره‌دار در ایجاد اختلاط قوی با نرخ اضمحلال انرژی پایین در یک رآکتور همزن جدید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد،دانشگاه علم و صنعت، تهران، ایران

2 دانشجوی دکتری،دانشگاه علم و صنعت ایران، تهران، ایران

3 استاد، دانشگاه تربیت مدرس، تهران، ایران

چکیده

کاربرد مخزن­های همزن در صنایع مختلف به دلیل کارایی، اختلاط مناسب و هزینه کم بسیار گسترده است. به طور معمول همزن­های استفاده شده در این دستگاه­ها از نوع پروانه­ای است که با حرکت چرخشی عمل اختلاط را انجام می­دهند. یکی از مهم‌ترین مشکلات این نوع همزن­ها اعمال تنش برشی بالا است که در کاربردهای زیست­فناوری و حساس، مخرب است. در این پژوهش رآکتور همزن جدیدی در مقیاس آزمایشگاهی معرفی شده است که با استفاده از دیسک ارتعاشی حفره­دار اختلاط را در سطوح تنش برشی پایین فراهم می­آورد. بررسی آزمایشگاهی و شبیه­سازی عددی این رآکتور همزن با محوریت بررسی اثر قطر دیسک انجام شده است. در بخش آزمایشگاهی، سلول راجی به­عنوان یکی از حساس­ترین ذرات زنده در این رآکتور همزن و با دیسک­های به قطر (mm) 25 و 65 کشت داده شده است. نتایج آزمایشگاهی نشان­دهنده اثر کاهشی قطر دیسک بر شاخص­های رشد سلول شامل لگاریتم طبیعی بیشینه غلظت سلول و بهره­وری است. این شاخص­ها، هنگام استفاده از دیسک (mm) 25 بالا و به ترتیب 2/13 و (cells/hmL) 4685 است که  عملکرد مناسب این رآکتور همزن را در کشت سلول نشان می­دهد. نتایج حاصل از شبیه­سازی عددی نشان­دهنده افزایش ده برابری فاکتور نرخ اضمحلال انرژی با افزایش قطر دیسک از (mm) 25 به 65 است که تطابق منطقی نتایج حاصل از شبیه­سازی عددی با نتایج آزمایشگاهی را نشان می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Holed Vibrating Disc Diameter in Creating Strong Mixing with Low Energy Dissipation Rate in a Novel Stirred Reactor

نویسندگان [English]

  • s.m h 1
  • Sepehr Govara 2
  • Masoud Soleimani 3
1 Professor, University of Science and Technology, Tehran, Iran
2 PhD student, Iran University of Science and Technology, Tehran, Iran
3 Professor, Tarbiat Modares University, Tehran, Iran
چکیده [English]

The use of stirred tanks is very common in various industries due to their efficiency, proper mixing, and low cost. Usually, the stirrers used in these devices are impeller-type, which perform the mixing with a rotary movement. One of the most important problems of the impeller stirrers is the application of high shear stress, which is destructive in biological and sensitive applications. In this research, a novel laboratory-scale stirred reactor has been introduced, which provides mixing at low shear stress levels by using a perforated vibrating disc. Experimental investigation and numerical simulation of the stirred reactor have been done focusing on the effect of disc diameter. In the experimental section, Raji cell, as one of the most sensitive living particles, has been cultured in this stirred reactor using discs with a diameter of 25 and 65 (mm). Experimental results show the decreasing effect of disc diameter on cell growth indices, including the natural logarithm of maximum cell concentration and productivity. These indicators when using a 25 (mm) disc are high and about 13.2 and 4685 (cells/hmL), respectively, which indicates the proper performance of this stirred reactor in cell culture. The results of the numerical simulation show a tenfold increase in the energy dissipation rate factor with an increase in the disc diameter from 25 to 65 (mm), which indicates the logical agreement of the numerical simulation results with the experimental data.

کلیدواژه‌ها [English]

  • Vibrating disc
  • Shear stress
  • Reactor
  • Numerical simulation
  • Cell culture

Smiley face

 

  1.  1.Zlokarnik, M. “Stirring: Theory and practice”,  John     Wiley & Sons, New Jersey, United States, 2008.

    1. Cullen, P. J. “Food mixing: Principles and applications”, John Wiley & Sons, New Jersey, United States, 2009.
    2. Antolli, P. G., Liu, Z. “Bioreactors: design, properties, and applications”, Nova Science Publishers, New York, United States, 2012.
    3. Sharma, R., Harrison, S. T. L., Tai, S. L. “Advances in bioreactor systems for the production of biologicals in mammalian cells”, Chem. Bio. Eng. Rev. Vol.9, No. 1, pp. 42-62, 2022. Doi: https://doi.org/10.1002/cben.202100022
    4. Keyhanpour, M., MirAbedini, F. S., Ghasemi, M. “ Numerical Study of the Magnetic Field Effect on Blood Flow in a Stenotic Artery Using Fluid-Solid Interaction Analysis”, Fluid Mechanics and Aerodynamics . J. Vol. 9, No. 2, pp. 53–63, 2021.  (In Persian)https://dor.isc.ac/dor/20.1001.1.23223278.1399.9.2.5.5
    5. Kazemzadeh, A., Elias, C., Tamer, M., Ein-Mozaffari, F. “Hydrodynamic performance of a single-use aerated stirred bioreactor in animal cell culture: applications of tomography, dynamic gas disengagement (DGD), and CFD”, Bioprocess. Biosyst. Eng. Vol. 41, pp. 679–95, 2018. Doi: https://doi.org/10.1007/s00449-018-1902-7
    6. Bulnes‐Abundis, D., Carrillo‐Cocom, L. M., Aráiz‐Hernández, D., García‐Ulloa, A., Granados‐Pastor, M., Sánchez-Arreola, P. B., Murugappan, G., and  Alvarez, M. M. “A simple eccentric stirred tank mini‐bioreactor: Mixing characterization and mammalian cell culture experiments”, Biotechnol. Bioeng. Vol. 110, No. 4, pp.  1106–1118, 2013. Doi: https://doi.org/10.1002/bit.24780
    7. Lim, D., Renteria, E. S., Sime, D. S., Ju, Y. M., Kim, J. H., Criswell, T., Shupe, T. D., Atala, A., Marini, F. C., Gurcan, M. N., Soker, S., Hunsberger, J., and Yoo, J. J. “Bioreactor design and validation for manufacturing strategies in tissue engineering”, Bio-design. Manuf. Vol. 5, pp. 43–63, 2022. Doi: https://doi.org/10.1007/s42242-021-00154-3
    8. Ismadi, M. Z., Hourigan, K., Fouras, A., “Experimental characterisation of fluid mechanics in a spinner flask bioreactor”, Processes. Vol. 2, No. 4, pp. 753–772, 2014. Doi: https://doi.org/10.3390/pr2040753
    9. Ismadi, M. Z., Gupta, P., Fouras, A., Verma, P., Jadhav, S., Bellare, J., and Hourigan, K. “Flow characterization of a spinner flask for induced pluripotent stem cell culture application”, PLoS One. Vol. 9, No. 10, e106493, 2014. Doi: https://doi.org/10.1371/journal.pone.0106493
    10. Abbas Nejad, A., Norouzi, M., Talebi, Z. “Investigation of Pulsatile Blood Flow Interaction with a Viscoelastic Artery and Its Effect on Atherosclerosis”, Fluid Mechanics and Aerodynamics. Vol. 3, No. 4, pp. 1–16, 2015. (In Persian)
    11. Kadivar, E., Alizadeh, A. “ Geometric Deformation of Red Cells in the Presence of a Magnetic Field”, Fluid Mechanics and Aerodynamics.Vol. 7, No. 1, pp. 65–72, 2018. (In Persian)https://dor.isc.ac/dor/20.1001.1.23223278.1397.7.1.6.0
    12. Qiu, F., Liu, Z., Liu, R., Quan, X., Tao, C., Wang, Y. “Gas-liquid mixing performance, power consumption, and local void fraction distribution in stirred tank reactors with a rigid-flexile impeller”, Exp. Therm. Fluid. Sci. Vol. 97, pp. 351–363, 2018. Doi: https://doi.org/10.1016/j.expthermflusci.2018.04.006
    13. Cherry, R. S., Papoutsakis, E. T. “Hydrodynamic effects on cells in agitated tissue culture reactors”, Bioprocess. Eng. Vol. 1, pp. 29–41, 1986. Doi: https://doi.org/10.1007/BF00369462
    14. Blüml G. Microcarrier cell culture technology. Anim cell Biotechnol methods Protoc, Humana Press, New Jersey, United States, 2007. Doi:https://doi.org/10.1007/978-1-59745-399-8_5
    15. Eichermueller M. C. “A Performance Study and Characterization of a Single Use Pharmaceutical Vibrational Mixer Using Computational Fluid Dynamics”, Master Thesis, California Polytechnic State University, 2014.
    16. de Arcos González-Turmo, I. “FUNDAMIX® VibromixerCharacterization”, Master Thesis, KTH ROYAL INSTITUTE OF TECHNOLOGY,  2014.
    17. Todaro, C. M., Vogel, H. C. “Fermentation and biochemical engineering handbook”, William Andrew, New York, United States, 2014.
    18. Komoda, Y., Inoue, Y., Hirata, Y. “Mixing performance by reciprocating disk in cylindrical vessel”, J. Chem. Eng. Japan. Vol. 33, No. 6, pp. 879–885, 2000. Doi: https://doi.org/10.1252/jcej.33.879
    19. Kamieński, J., Wójtowicz, R. “Dispersion of liquid–liquid systems in a mixer with a reciprocating agitator”, Chem. Eng. Process. Process. Intensif. Vol. 42, No.12, pp. 1007–1017, 2003. Doi: https://doi.org/10.1016/S0255-2701(02)00214-3
    20. Masiuk, S., Rakoczy, R. “Power consumption, mixing time, heat and mass transfer measurements for liquid vessels that are mixed using reciprocating multiplates agitators”, Chem. Eng. Process. Process. Intensif. Vol. 46, No. 2, pp. 89–98, 2007. Doi: https://doi.org/10.1016/j.cep.2006.05.002
    21. Wójtowicz, R. “Choice of an optimal agitated vessel for the drawdown of floating solids”, Ind. Eng. Chem. Res. Vol. 53, No. 36, pp. 13989–4001, 2014. Doi: https://doi.org/10.1021/ie500604q
    22. Wójtowicz, R. “Flow pattern and power consumption in a vibromixer”, Chem. Eng. Sci. Vol. 172, pp. 622–35, 2017. Doi: https://doi.org/10.1016/j.ces.2017.07.0105
    23. Orlewski, P. M., Wang, Y., Hosseinalipour, M. S., Kryscio, D., Iggland, M., Mazzotti, M. “Characterization of a vibromixer: Experimental and modelling study of mixing in a batch reactor”, Chem. Eng. Res. Des. Vol. 137, pp. 534–543, 2018. Doi: https://doi.org/10.1016/j.cherd.2018.08.003
    24. Ulrich, K., Moore, G. E. “A vibrating mixer for agitation of suspension cultures of mammalian cells”, Biotechnol. Bioeng. Vol. 7, No. 4, pp. 507–515, 1965. Doi: https://doi.org/10.1002/bit.260070406
    25. Malik, P., Mukherjee, T.K. “Large-Scale Culture of Mammalian Cells for Various Industrial Purposes. In: Practical Approach to Mammalian Cell and Organ Culture”, Springer, Singapore, 2023.
    26. Birch, J. R., Arathoon, R. “Suspension culture of mammalian cells. In: Large-Scale Mammalian Cell Culture Technology”, Taylor & Francis, London, England, 2018. Doi: https://doi.org/10.1201/9780203749166
    27. Acton, R. T., Lynn, J. D. “Description and operation of a large-scale, mammalian cell, suspension culture facility. In: Advances in Biochemical Engineering”, Springer, Berlin, Germany, 2006.
    28. Gupta, S. K., Dangi, A. K., Smita, M., Dwivedi, S., Shukla, P. “Effectual bioprocess development for
      protein production. In: Applied microbiology and bioengineering”, Elsevier, Amsterdam, Netherlands, 2019. Doi: https://doi.org/10.1016/B978-0-12-815407-6.00011-3
    29. Prokop, A., Rosenberg, M. Z. “Bioreactor for mammalian cell culture”, Vertebr. Cell. Cult. II Enzym. Technol, Springer, Berlin, Germany, 2006. Doi: https://doi.org/10.1007/BFb0051951
    30. Bilgen, B., Chang‐Mateu, I. M., Barabino, G. A. “Characterization of mixing in a novel wavy‐walled bioreactor for tissue engineering”, Biotechnol. Bioeng. Vol. 92, No. 7, pp. 907-919, 2005. Doi: https://doi.org/10.1002/bit.20667
    31. Stanbury, P. F., Whitaker, A., Hall, S. J. “Principles of fermentation technology”, Elsevier, Amsterdam, Netherlands, 2013.
    32. Poon, C. “Measuring the density and viscosity of culture media for optimized computational fluid dynamics analysis of in vitro devices”, J. Mech. Behav. Biomed. Mater. Vol. 126, 2022. Doi: https://doi.org/10.1016/j.jmbbm.2021.105024
    33. Singh, H. “Modelling of shear sensitive cells in stirred tank reactor using computational fluid dynamics”, Master Thesis, University of Canterbury, Faculty of Chemical and Process Engineering, 2011;
    34. Trinh, K., Garcia‐Briones, M., Chalmers, J. J., Hink, F. “Quantification of damage to suspended insect cells as a result of bubble rupture”, Biotechnol. Bioeng. Vol. 43, No. 1, pp. 37-45, 1994. Doi: https://doi.org/10.1002/bit.260430106
    35. Gregoriades, N., Clay, J., Ma, N., Koelling, K., Chalmers, J. J. “Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow”, Biotechnol. Bioeng. Vol. 69, No. 2, pp. 171–182, 2000. Doi: https://doi.org/10.1002/(SICI)1097-0290(20000720)69:2<171::AID-BIT6>3.0.CO;2-C
    36. Mollet, M., Ma, N., Zhao, Y., Brodkey, R., Taticek, R., Chalmers, J. J. “Bioprocess equipment: characterization of energy dissipation rate and its potential to damage cells”, Biotechnol. Prog. Vol. 20, No. 5, pp.1437-1448, 2004. Doi: https://doi.org/10.1021/bp0498488
    37. Hu, W., Berdugo, C., Chalmers, J. J. “The potential of hydrodynamic damage to animal cells of industrial relevance: current understanding”, Cytotechnology. Vol. 63, pp. 445–460, 2011. Doi: https://doi.org/10.1007/s10616-011-9368-3
    38. Johnson, C., Natarajan, V., Antoniou, C. “Verification of energy dissipation rate scalability in pilot and production scale bioreactors using computational fluid dynamics”, Biotechnol. Prog. Vol. 30, No. 3, pp. 760-764, 2014. Doi: https://doi.org/10.1002/btpr.1896
    39. Petry, F., Salzig, D. “Impact of bioreactor geometry on mesenchymal stem cell production in stirred‐tank bioreactors”, Chemie. Ing. Tech. Vol. 93, No. 10, pp. 1537-1554, 2021. Doi: https://doi.org/10.1002/cite.202100041
دوره 13، شماره 2 - شماره پیاپی 33
پاییز و زمستان 1403
آذر 1403
صفحه 43-54
  • تاریخ دریافت: 27 اردیبهشت 1403
  • تاریخ بازنگری: 24 شهریور 1403
  • تاریخ پذیرش: 22 آبان 1403
  • تاریخ انتشار: 11 آذر 1403