بررسی عددی تأثیر سه نوع بالک مختلف بر عملکرد آیرودینامیکی جریان در عدد رینولدز پایین

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی،دانشگاه فردوسی مشهد

2 دانشکده مهندسی دانشگاه فردوسی مشهد

چکیده

در این پژوهش اثر سه نوع بالک ترکیبی، پرهای و تک شاخه بر روی یک بال مشخص توسط یک روش عددی بر مبنای حجم محدود و
الگوریتم فشار مبنا بررسی شده است. در روش عددی مذکور جریان را آشفته در نظر گرفته و از مدل اسپالارت- آلماراس استفاده شده است.
4 میباشد. برای محاسبه تنشها روی سطح بال از توابع / و نسبت منظری 6 SD 1/5 ، مقطع بال 7032 × در این شبیهسازی عدد رینولدز 105
دیواره و از دقت مرتبه دوم بالا دست برای محاسبه شار جابجایی استفاده شده است. در کار حاضر تأثیر نصب سه نوع بالک در حالتی که از
یک نوع بالواره برای بال و بالک استفاده شود بر روی عملکرد آیرودینامیکی یک بال مستطیلی بررسی شده است. با ارزیابی انجام گرفته
ضرایب آیرودینامیکی و فیزیک جریان مشخص شد که استفاده از بالواره یکسان برای بال و بالک در ازای زوایای حمله مختلف، باعث افزایش
%3/1 عملکرد بالک پرهایی درمقایسه با حالت استفاده از دو بالواره مختلف شده و همچنین برای بالکهای ترکیبی و پرهای بهصورت میانگین
10 و 10 % عملکرد آیرودینامیکی نسبت به بال بدون بالک خواهد شد و برای بالک تک شاخه تنها تأثیر جزئی بر کاهش / موجب افزایش 5
قدرت هسته مرکزی گردابهها خواهد گذاشت.

کلیدواژه‌ها


Barnes, W. and McCormick, W. “Aerodynamics
Aeronautics and Flight Mechanics”, ed: New
York: Wiley, 1995.##
2. Cleynen, O. “Drag Curves for an Aircraft with a
Given Weight in Flight Available”,
https://commons.wikimedia.org/wiki/File:Drag_
curves_for_aircraft_in_flight.svg, 2016.##
3. Anderson, J. D. “Fundamentals of
Aerodynamics”, Fifth ed. New York: McGraw-
Hill, 2011.##
4. Chambers, J. R. “Concept to Reality:
Contributions of the Langley Research Center to
US Civil Aircraft of the 1990s”. Virginia, United
States: NASA, 2003##
5. Jarrett, P. “FW Lanchester and the Great
Divide”,https://www.aerosociety.com/media/484
6/fw-lanchester-and-the-great-divide.pdf, 2014.##
6. Whitcomb, R. T. “A Design Approach and
Selected Wind Tunnel Results at High Subsonic
Speeds for Wing-tip Mounted Winglets”,
NASAL-10908, 1976.##
7. Mihaela, S. D. “Estimating the Oswald Factor
from Basic Aircraft Geometrical Parameters”,
Hamburg University of Applied Sciences. no.
281424, p. 19, 2012.##
8. Guerrero, J. E, Maestro D, and Bottaro, A. J.
“Biomimetic Spiroid Winglets for Lift and Drag
Control”, Comptes Rendus Mecanique. Vol.
340, no. 1-2, pp. 67-80, 2012.##
9. Gold, V. K. “Aerodynamic Effects of Local
Dihedral on a Raked Wingtip”, 40th AIAA
Aerospace Sciences Meeting & Exhibit, 2002.##
10. Halpert, P. D, Prescott, D. H, Yechout, T. R, and
Arndt, M. “Aerodynamic Optimization and
Evaluation of KC-135R Winglets, Raked
Wingtips, and a Wingspan Extension”, 48th
AIAA Aerospace Sciences Meeting, 2010.##
11. Sohn, M. H. and Chang, J. W. “Visualization
and PIV Study of Wing-tip Vortices for Three
Different Tip Configurations”, Aerospace
Science and Technology. Vol. 16, no. 1, pp. 40-
46, 2012.##
12. Altab, H, Atour, H, Hossen, Jakari, H, and
Iqbal, A.K.M.P. “Prediction of Aerodynamic
Characteristics of an Aircraft Model With and
Without Winglet Using Fuzzy Logic
Technique”, Aerospace Science and Technology.
Vol. 15, no. 8, pp. 595-605, 2011.##
13. Cosin, R, F, Catalano, Correa, L.G.N, and Entz
R. “Aerodynamic Analysis of Multi-Winglets for
Low Speed Aircraft”, 27th International
Congress of the Aeronautical Sciences, 2010.##
14. Savile, D. J. E. “Adaptive Evolution in the Avian
Wing”, Pathology Laboratory, Science Service,
Ottawa, Ontario, Canada, 1956##
15. Lynch, M. K. “Bio-inspired Adaptive Wingtip
Devices for Low Reynolds Number Operation”,
Master of Science Dissertation, University of
Illinois at Urbana-Champaign. 2017.##
16. Panagiotou, P, Kaparos, and Yakinthos K.
“Winglet Design and Optimization for a Male
UAV Using CFD”, Aerospace Science and
Technology. Vol. 39, pp. 190-205, 2014.##

17. Narayan, G. and John, B. J. A. S. “Effect of
Winglets Induced Tip Vortex Structure on the
Performance of Subsonic Wings”, Aerospace
Science and Technology. Vol. 58, pp. 328-340,
2016.##
18. Bravo-Mosquera, P. D, Cerón-Munoz, H. D,
and Diaz-Vazquez, G. “Conceptual Design and
CFD Analysis of a New Prototype of
Agricultural Aircraft”, Aerospace Science and
Technology. Vol. 80, pp. 156-176, 2018.##
19. Versteeg, M. H. and Malalasekera, W. “An
Introduction to Computational Fluid Dynamics”,
Second ed. England: Pearson Education, 2006.##
20. Munson, B. R, Young, D. F, Okiishi, T. H, and
Huebsch, W. W. “Fundamentals of Fluid
Mechanics”, Sixth ed. USA: WILEY, 2009##
21. Spalart, P. and Allmaras, S. “A One-Equation
Turbulence Model for Aerodynamic Flows”, in
30th Aerospace Sciences Meeting and Exhibit,
1992, p. 439.##
22. Ansys. “ANSYS Fluent Users Guide”,
http://www.pmt.usp.br/academic/martoran/notas
modelosgrad/ansys%20fluent%20users%20guid
e.pdf, 2013##