بررسی عددی خصوصیات جریان و انتقال حرارت روی یک صفحه مسطح تحت‌تأثیر یک جت برخوردی خود محرک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه گیلان، رشت، ایران

2 استادیار، دانشگاه گیلان، رشت ، ایران

3 استاد، دانشگاه گیلان، رشت، ایران

4 استادیار، دانشگاه بیرا اینتریور، کوویلیا، پرتغال

چکیده

در تحقیق حاضر به بررسی عددی میدان جریان و انتقال حرارت برخوردی نوسان‌سازهای سیال در فواصل نزدیک پرداخته شده است. شبیه‌سازی‌ها تحت شرایط دوبعدی، تراکم‌ناپذیر و ناپایا انجام شده و هدف ارزیابی تأثیر تغییر فاصله، تغییر زاویه نازل خروجی، حذف نازل خروجی و تغییر عدد رینولدز است. همچنین برای بررسی جامع، نتایج نوسان‌ساز سیال با نتایج جت ثابت مقایسه شده است. به‌منظور صحت‌سنجی نتایج از دو پژوهش تجربی برای نوسان‌ساز سیال و جت ثابت بهره برده شده و تطابق خوبی میان نتایج مشاهده شده است. نتایج نشان می‌دهد که افزایش فاصله در نوسان‌سازها سبب کاهش حداکثر حدود 11 درصد در عدد ناسلت برای نقطه سکون می‌شود، درحالی که تغییر فاصله تأثیر قابل توجهی در جت ثابت ندارد. علاوه بر این، تغییر در زاویه نازل خروجی سبب تغییر در عدد ناسلت می‌شود اما این تغییر روند مشخصی ندارد. شایان ذکر است که حذف نازل خروجی نیز باعث افزایش عدد ناسلت می‌شود. افزایش عدد رینولدز برای نوسان‌ساز‌ها و جت ثابت به ترتیب سبب افزایش تقریبی حداقل 22 و 28 درصد در عدد ناسلت در نقطه سکون خواهد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical investigation of heat and fluid features on a flat plate affected by a self-oscillator impingement jet

نویسندگان [English]

  • Mohadeseh Khodkameh, 1
  • Farid Dolati 2
  • Nima Amanifard, 3
  • Abdollahzadehsangroudi, Mohammadmahdi 4
1 Master student, Gilan University, Rasht, Iran
2 Assistant Professor, Guilan University, Rasht, Iran
3 Professor.University of Guilan, Rasht, Iran
4 Assistant Professor, University of Beira Interior, Portugal
چکیده [English]

In this study, the flow field and the impingement heat transfer of fluidic oscillators at narrow spaces are investigated numerically. Simulations are performed in 2-D, incompressible, and unsteady conditions and the aim is to analyze the effects of the jet to wall distance, the external nozzle angle, the Reynolds number, and removing the external nozzle on the heat transfer performance. Also, for a comprehensive review, the results of the fluidic oscillator are compared with the results of the steady jet. To ensure the validity of the numerical simulations, two experimental researches are applied for the fluidic oscillator and the steady jet and a good agreement is observed between the present simulations and the experimental data. The results show that increasing the distance in fluidic oscillators causes a maximum decrease of about 11% at the Nusselt number of the stagnation point, while employing the various distances does not have a significant effect on the steady jet. In addition, the configuration of the different external nozzle angles affects the Nusselt number, but this influence does not have a monotonic behavior. Furthermore, the Nusselt number increases by removing the external nozzle. When the Reynolds number increases for the fluidic oscillator and the steady jet, the Nusselt number of the stagnation point increases by at least about 22 and 28%, respectively.

کلیدواژه‌ها [English]

  • Heat transfer
  • Impinging jet
  • Numerical simulation
  • Flow field
  • Fluidic oscillator

Smiley face

https://creativecommons.org/licenses/by/4.0/

  1. Maghrabie, H. M. “Heat Transfer Intensification of Jet Impingement using Exciting Jets - A Comprehensive Review”, Sustain. Energy Rev. Vol. 139, p. 110684, 2021. Doi: 10.1016/j.rser.2020.110684
  2. Hossain, M. A. “Sweeping Jet Film Cooling”, PhD Dissertation, The Ohio State University, 2020.
  3. Hossain, M. A., Prenter, R., Lundgreen, R. K., Ameri, A., Gregory, J. W., and Bons, J. P., “Experimental & Numerical Investigation of Sweeping Jet Film cooling”, ASME Turbo Expo Vol. 140, No. 3, p. 031009, 2018. Doi: 10.1115/GT2017-64479
  4. Koklu, M., “Effect of a Coanda Extension on the Performance of a Sweeping-jet Actuator”, AIAA J. Vol. 54, No. 3, pp. 1125–1128, 2016. Doi: 10.2514/1.J054448
  5. Ghanami, S. and Farhadi, M., “Fluidic Oscillators’ Applications, Structures and Mechanisms– A Review”, Nano Micro Scale Sci. Vol. 7, No. 1, pp. 9–27, 2019. Doi: 10.22111/tpnms.2018.25051.1153
  6. Abdelmaksoud, R. and Wang, T., “A Review on Thermal-Fluid Behavior in Sweeping Jet Fluidic Oscillators”, ASTFE Digital Library Doi: 10.1615/tfec2021.hte.036836
  7. Spens, A. and Bons, J. P., “Experimental Investigation of Synchronized Sweeping Jets for Film cooling applications”; AIAA Scitech 2021 Forum, pp. 1–15, 2021. Doi: 10.2514/6.2021-2003
  8. Gricola, L., Prenter, R., Lundgreen, R., Hossain, M., Ameri, A., Gregory, J., and Bons, J., “Impinging Sweeping jet Heat Transfer”; 53rd AIAA/SAE/ASEE Jt. Propuls. Conf. Atlanta, GA, Doi: 10.2514/6.2017-4974
  9. Hossain, M. A., Agricola, L. M., Ameri, A., Gregory, J. W., and Bons, J. P., “Effects of Curvature on the Performance of Sweeping jet impingement Heat Transfer”; AIAA Aerospace Sciences Meeting Kissimmee, Florida, 2018. Doi: 10.2514/6.2018-0243
  10. Park, T., Kara, K., and Kim, D., “Flow Structure and Heat Transfer of a Sweeping Jet Impinging on a Flat wall”, Int. J. Heat Mass Transf. Vol. 124, pp. 920–928, 2018. Doi: 10.1016/j.Ijheatmasstransfer.2018.04.016
  11. Hossain, M. A., Agricola, L. M., Ameri, A., Gregory, J. W., and Bons, J. P., “Effects of exit Fan Angle on the Heat Transfer Performance of Sweeping Jet Impingement”; 2018 Int. Energy Convers. Eng. Conf. Cincinnati, USA, 2018. Doi: 10.2514/6.2018-4886
  12. Wu, Y., Yu, S., and Zuo, L., “Large eddy Simulation Analysis of the Heat Transfer Enhancement using Self-oscillating Fluidic Oscillators”, Int. J. Heat Mass Transf. Vol. 131, pp. 463–471, 2018. Doi: 10.1016/j.Ijheatmasstransfer.2018.11.070
  13. Agricola, L., Hossain, M. A., Ameri, A., Gregory, J. W., and Bons, J. P., “Sweeping jet Impingement Heat Transfer on a Simulated Turbine vane leading Edge”, Proc. ASME Turbo Expo Vol. 2, pp. 402-414, 2018. Doi: 10.1115/GT2018-77073
  14. Zhou, W., Yuan, L., Liu, Y., Peng, D., and Wen, X., “Heat Transfer of a sweeping Jet Impinging at Narrow Spacings”, Exp. Therm. Fluid Sci. Vol. 103, pp. 89–98, 2019. Doi: 10.1016/j.expthermflusci.2019.01.007
  15. Kim, S. H., Kim, H. D., and Kim, K. C., “Measurement of two-Dimensional heat transfer and flow characteristics of an impinging Sweeping jet”, Int. J. Heat Mass Transf. Vol. 136, pp. 415–426, 2019. Doi: 10.1016/j.Ijheatmasstransfer.2019.03.021
  16. Kim, D. J., Jeong, S., Park, T., and Kim, D., “Impinging Sweeping jet and Convective heat Transfer on curved Surfaces”, Int. J. Heat Fluid Flow Vol. 79, p. 108458, 2019. Doi: 10.1016/j.Ijheatfluidflow.2019.108458
  17. Hossain, M. A., Ameri, A., Gregory, J. W., and Bons, J. P., “Effects of Fluidic Oscillator Nozzle Angle on the Flowfield and Impingement Heat Transfer”, AIAA Journal 59, No. 6, pp. 2113-2125, 2021. Doi: 10.2514/1.J059931
  18. Joulaei, A., Nili-Ahmadabadi, M., and Chun Kim, K., “Parametric Study of a Fluidic Oscillator for Heat Transfer Enhancement of a hot Plate Impinged by a Sweeping jet”, Appl. Therm. Eng. Vol. 205, p. 118051, 2022. Doi: 10.1016/j.Applthermaleng.2022.118051
  19. Joulaei, A., Nili-Ahmadabadi, M., Chun, K., and Yeong, M., “Phosphor Thermometry Evaluation of Heat Transfer Enhancement on a hot Plate Achieved by a vortex-Based Fluidic Oscillator”, Therm. Sci. Eng. Prog. Vol. 47, p. 102269, 2024. Doi: 10.1016/j.tsep.2023.102269
  20. Joulaei, A., Nili-Ahmadabadi, M., and Yeong Ha, M., “Numerical Study of the Effect of Geometric Scaling of a fluidic oscillator on the Heat Transfer and Frequency of Impinging Sweeping jet”, Appl. Therm. Eng. Vol. 221, p. 119848, 2023. Doi: 10.1016/j.applthermaleng.2022.119848
  21. Stouffer, R. D. “Oscillating Spray Device”; US Patent 4,151,955, 1979.
  22. Menter, F. R., “Performance of Popular Turbulence Models for Attached and Separated Adverse Pressure Gradient Flows”, AIAA J. Vol. 30, No. 8, pp. 2066–2072, 1992. Doi: 10.2514/3.11180
  23. Menter, F. R., Kuntz, M., and Langtry, R., “Ten Years of Industrial Experience with the SST Turbulence Model”, Heat Mass Transf. Vol. 4, No. 1, 625-632, 2003.
  24. ANSYS “CFD EXPERTS Simulate the Future”, 2021.
  25. Gardon, R. and Akfirat, J. C., “Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets”, J. Heat Transfer Vol. 88, No. 1, pp. 101–107, 1966.
  26. Gardon, R. and Akfirat, J. C., “The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging jets”, Int. J. Heat Mass Transf. 8, No. 10, pp. 1261-1272, 1965.