بررسی عددی اثر جت مصنوعی، موقعیت و تعداد آن بر ضرایب آیرودینامیکی ایرفویل بال یک هواپیمای مانور پذیر

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر، دانشگاه هوایی شهید ستاری، تهران، ایران.

2 دانشیار، دانشگاه هوایی شهید ستاری، تهران، ایران.

3 کارشناسی ارشد، دانشگاه هوایی شهید ستاری، تهران، ایران.

چکیده

در این مطالعه به بررسی عددی اثر محرک جت‌ مصنوعی تکی و دوگانه بر راندمان آیرودینامیکی ایرفویل بال یک هواپیمای مانور پذیر با استفاده از نرم افزار فلوئنت پرداخته شده است. جریان حول ایرفویل، با استفاده از معادلات ناویر-استوکس رینولدز متوسط ناپایای آشفته با مدل آشفتگی کا- اپسیلون حل شده است. بررسی عددی در عدد ماخ 15/0 (متناظر با عدد رینولدز دو میلیون) و در زوایای حمله صفر تا 19 درجه انجام شده است. برای گسسته‌سازی دامنه محاسباتی از شبکه‌بندی با سازمان با 106469 المان استفاده شده است. در این بررسی محرک جت مصنوعی تک و دوگانه در موقعیت‌های مختلف روی سطح بالایی ایرفویل قرار گرفته تا مناسب‌ترین موقعیت از لحاظ بهترین راندمان آیرودینامیکی بدست آید. نتایج این بررسی عددی نشان داد که برای جت مصنوعی تکی بیشترین مقدار راندمان آیرودینامیکی مربوط به جت مصنوعی قرار گرفته در موقعیت  63/8 درصدی طول وتر از لبه حمله ایرفویل است. زیرا در این موقعیت اندازه حباب جدایش بر روی ایرفویل کوچک­تر می­شود. همچنین برای  جت مصنوعی دوگانه  بیشترین راندمان آیرودینامیکی در موقعیت­های جت مصنوعی 63/8 % و 12% وتر بدست می­آید. همچنین بیشترین درصد افزایش راندمان آیرودینامیکی در حالت جت تکی72/23 درصد و در حالت جت دوتایی 4/27 درصد است.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical investigation of the effect of synthetic jet, its position and number on the aerodynamic coefficients of the airfoil wing of a maneuverable aircraft

نویسندگان [English]

  • Ahmad Sharafi, 1
  • Reza Khaki, 2
  • reza Hassanvand, 3
1 Researcher, Shahid Sattari Aviation University, Tehran, Iran.
2 Associate Professor, Shahid Sattari Aviation University, Tehran, Iran.
3 Master's degree, Shahid Sattari Aviation University, Tehran, Iran
چکیده [English]

 




In this study, the effect of single and double synthetic jet actuators on the aerodynamic efficiency of the airfoil wing of a maneuverable aircraft has been numerically investigated using Fluent software. The flow around the airfoil has been solved using the turbulent unsteady Reynolds-averaged Navier-Stokes equations with k–ε Turbulence model in Fluent software. Investigations have been carried out at a Mach number of 0.15 (corresponding to a Reynolds number of two million) and at angles of attack from 0 to 19 degrees. The grid with 106469 elements is organized so that the y+ parameter on the airfoil boundary is in order 1 to discretize the computational domain. In these investigations, the single and double synthetic jet actuators are placed in different positions on the upper surface of the airfoil to obtain the most suitable position in terms of the best aerodynamic efficiency. The results of this numerical study showed that for a single synthetic jet, the highest aerodynamic efficiency value of the synthetic is in the 8.63% chord from the airfoil leading edge. Because in this position, the size of the separation bubble on the airfoil becomes smaller. Also, for the double synthetic jet, the highest aerodynamic efficiency is obtained in the synthetic jet positions of 8.63% and 12% chord from the airfoil leading edge. The highest percentage increase in single jet mode is 23.72%, and in double jet mode, it is 27.4%.

کلیدواژه‌ها [English]

  • Flow Separation
  • Synthetic Jet
  • Aerodynamics Efficiency
  • Numerical Study
  • Control Flow

Smiley face

[1] Hak, M. G. (2000). Flow control, Cambridge University Press, Cambridge. 
[2] Yadegari, M. and S. T. S. SEYED (2015). "A Parametric Study for Passive Control of Shock-boundary Layer Interaction of an Airfoil with Porous Media in a Transonic Flow."
[3] Farajollahi, A. and M. R. Salimi (2023). "Numerical investigation of the cavity effects on the passive flow control of NACA0012 airfoil under dynamic stall conditions." Fluid Mechanics & Aerodynamics Journal 11(2): 95-108.
[4] Sharafi, A., et al. (2011). "Experimental and numerical investigation of vortex generator effects on flow pattern and aerodynamic coefficients of an airplane wing model." Journal of Aeronautical Engineering 13(2): 1-16.
[5] Farajollahi, A., et al. (2022). "Numerical Simulation and Investigation of the Effects of Vortex Generator on Aerodynamic Coefficients of the Main Helicopter Rotor in Hover." Fluid Mechanics & Aerodynamics Journal 10(2): 55-66.
 [6] Sharafi, A. and M. Alaee (2020). " Numerical investigation of riblet effect on aerodynamic coefficients of an airfoil." The 18th International Conference of Iranian Aerospace Society.
[7] Saeedi, M. and R. Aghaei Tough (2021). "Delay in flow separation on wind turbine blade by combining slat effect and longitudinal slot." Fluid Mechanics & Aerodynamics Journal 9(2): 39-52.
[8] Sharafi, A. and M. Al Havaz (2019). "Effect of Steady Spanwise Blowing on the Aerodynamic Coefficients of a Maneuverable Aircraft Wing Model." Amirkabir Journal of Mechanical Engineering 52(11): 3001-3014.
[9] Sharafi, A. (2023). "Numerical investigation of simultaneous blowing and suction on the wing's airfoil of a maneuverable aircraft." Journal of Mechanical Engineering 52(4): 203-211.
[10] Shojaeefard, M. H., et al. (2017). "Experimental and Numerical Investigations of Oscillation Parameters Effects on Stability Derivatives of a NACA0012 Airfoil." Journal of Fluid Mechanics and Aerodynamics 6(1): 27-38.
 [11] Azargoon, Y. and E. Esmaeili Far (2019). "Optimize motion characteristics of Oscillation Airfoil near the Water Surface using Genetic Algorithm and RSM." Fluid Mechanics & Aerodynamics Journal 8(1): 81-93.
 [12] SAS, S. T., et al. (2012). "Experimental investigation of active flow control for changing stall angle of a NACA0012 airfoil using plasma-actuator." Journal of fluid and aerodynamic mechanics 1(1): 89-97.
[13] Mohseni, K. and R. Mittal (2014). Synthetic jets: fundamentals and applications, CRC Press.
[14] Auerbach, D. (1987). "Experiments on the Trajectory and Circulation of the Starting Vortex." Journal of Fluid Mechanics 183: 185-198.
[15] Miller, A. C. (2005). Flow control via synthetic jet actuation, Texas A & M University.
[16] O'Donnell, K., et al. (2007). Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators: modeling, simulations, experiments. Modeling, Signal Processing, and Control for Smart Structures 2007, SPIE.
[17] Durrani, N. and B. A. Haider (2011). Study of stall delay over a generic airfoil using synthetic jet actuator. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
[18] Çiftci, M. (2014). Synthetic jet application on a flapping airfoil, Middle east Technical University.
[19] Montazer, E., et al. (2016). Optimization of a synthetic jet actuator for flow control around an airfoil. IOP Conference Series: Materials Science and Engineering, IOP Publishing.
[20] Azzawi, I. D. J. (2016). Application of Synthetic Jet Actuators for Modification of Separated Boundary Layers, University of Leeds.
[21] Dahalan, M. N. B. (2017). Effectiveness of Synthetic Jet Actuators for Separation Control on an Airfoil, Universiti Teknologi Malaysia.
[22] Tang, Z., et al. (2018). "Large-scale separation flow control on airfoil with synthetic jet." International Journal of Computational Fluid Dynamics 32(2-3): 104-120.
[23] Shokrgozar Abbasi, A. and S. Yazdani (2021). "A numerical investigation of synthetic jet effect on dynamic stall control of oscillating airfoil." Scientia Iranica 28(1): 343-354.
[24] Feng, J., et al. (2019). "Effect of synthetic jet parameters on flow control of an aerofoil at high Reynolds number." Sādhanā 44: 1-10.
[25] Hasegawa, H. and S. Obayashi (2018). "Active stall control system on NACA0012 by using synthetic jet actuator." Journal of Flow Control, Measurement & Visualization 7(1): 61-72.
[26] Liu, Z., et al. (2020). "Estimation of the momentum coefficient of synthetic jet in flow separation control over an airfoil." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 234(14): 2050-2061.
[27] Yang, E. (2021). PIV Study of Control by Synthetic Jets to Delay Flow Separation Over an Airfoil, University of Toronto (Canada).
[28] Zhao, G., et al. (2022). "Wind-tunnel tests of synthetic jet control effects on airfoil flow separation." Scientific Reports 12(1): 21994.
[29] Najafi, E., et al. (2022). "Investigation of synthetic jet actuator position in delaying separation of a supercritical airfoil." Journal of Aeronautical Engineering 24(1): 83-96. 
[30] Najafi, E., et al. (2022). "Numerical Study of the Effects of Excitation Frequency of Synthetic Jet Actuator on Aerodynamic Performance of a Supercritical Airfoil." Aerospace Knowledge and Technology Journal 11(1): 161-176.
[31] Chen, X., et al. (2023). "Numerical Investigations of Synthetic Jet Control Effects on Iced Airfoils." Energies 16(22): 7487.
[32] Hosseini, N., et al. (2023). "Flow control with synthetic jets on two tandem airfoils using machine learning." Physics of Fluids 35(2).
 
 
دوره 13، شماره 1 - شماره پیاپی 33
بهار و تابستان 1403
مرداد 1403
  • تاریخ دریافت: 20 فروردین 1403
  • تاریخ بازنگری: 28 خرداد 1403
  • تاریخ پذیرش: 10 تیر 1403
  • تاریخ انتشار: 01 مرداد 1403